最速下降法

首先,计算函数f的梯度向量: ∇ f ( x 1 , x 2 ) = [ 2 x 1 50 x 2 ] \nabla f(x_1,x_2) = \begin{bmatrix}2x_1\\50x_2\end{bmatrix} f(x1,x2)=[2x150x2]

然后,选择一个初始点 ( x 1 0 , x 2 0 ) (x_1^0,x_2^0) (x10,x20),比如 ( 0 , 0 ) (0,0) (0,0)

接下来,根据最速下降法的迭代公式进行迭代,直到收敛为止:

[ x 1 k + 1 x 2 k + 1 ] = [ x 1 k x 2 k ] − α k ∇ f ( x 1 k , x 2 k ) \begin{bmatrix}x_1^{k+1}\\x_2^{k+1}\end{bmatrix} = \begin{bmatrix}x_1^{k}\\x_2^{k}\end{bmatrix} - \alpha_k \nabla f(x_1^k,x_2^k) [x1k+1x2k+1]=[x1kx2k]αkf(x1k,x2k)

其中, α k \alpha_k αk是步长(学习率),通常需要通过试错法进行选取,以确保迭代的稳定性和收敛性。

在本例中,由于 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2)是一个凸二次函数,因此最速下降法可以保证收敛,并得到全局最优解。

具体的迭代过程如下:

k k k ( x 1 k , x 2 k ) (x_1^k,x_2^k) (x1k,x2k) ∇ f ( x 1 k , x 2 k ) \nabla f(x_1^k,x_2^k) f(x1k,x2k) α k \alpha_k αk ( x 1 k + 1 , x 2 k + 1 ) (x_1^{k+1},x_2^{k+1}) (x1k+1,x2k+1)f ( x 1 k + 1 , x 2 k + 1 ) (x_1^{k+1},x_2^{k+1}) (x1k+1,x2k+1)
0(0,0)(0,0)1(0,0)0
1(0,0)(0,0)0.02(0,0)0
2(0,0)(0,0)0.0008(0,0)0
3(0,0)(0,0)0.000032(0,0)0
4(0,0)(0,0)1.28E-6(0,0)0
5(0,0)(0,0)5.12E-8(0,0)0

可以看到,最速下降法迭代6次后收敛,得到的最小值为0,也就是函数 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2)的最小值。请您继续提问,我将尽快回答您的问题。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

徐行tag

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值