【Matlab光伏功率预测】基于WOA-BP鲸鱼算法优化BP神经网络的多变量光伏功率预测

36 篇文章 43 订阅 ¥39.90 ¥99.00
本文介绍了如何使用鲸鱼优化算法(WOA)优化BP神经网络,用于多变量光伏功率预测。通过WOA-BP算法,提高了预测的准确性和性能,详细阐述了在MATLAB中实现该方法的基本步骤,包括数据准备、模型构建、WOA参数初始化、适应度函数定义、算法实现、模型训练与优化、评估和验证。
摘要由CSDN通过智能技术生成

【Matlab光伏功率预测】基于WOA-BP鲸鱼算法优化BP神经网络的多变量光伏功率预测

文章介绍

基于WOA-BP鲸鱼算法优化BP神经网络的多变量光伏功率预测是一种利用鲸鱼优化算法(Whale Optimization Algorithm,WOA)来优化反向传播神经网络(Backpropagation Neural Network,BP)的方法,用于预测光伏电站的功率输出。

光伏电站的功率输出受多个变量的影响,如光照强度、温度、风速等。传统的BP神经网络可以用于建模并预测光伏功率,但其性能可能受到局部最优解的限制。

为了提高BP神经网络的性能,可以将WOA算法与BP神经网络相结合。WOA算法是一种基于仿生学的优化算法,模拟了鲸鱼群体的行为。它通过模拟鲸鱼的搜索行为来寻找最优解,并具有全局搜索和局部搜索的能力。

在这种方法中,首先使用BP神经网络对光伏功率进行预测,并计算预测误差。然后,将WOA算法应用于BP神经网络的权重和偏置参数,通过优化这些参数来减小预测误差。WOA算法的搜索过程会根据目标函数(即预测误差)进行调整,以寻找更优的参数组合。

通过WOA-BP算法的优化,可以提高光伏功率预测的准确性和性能,使其更适应实际应用场景,并且具备

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值