【Matlab光伏功率预测】基于WOA-BP鲸鱼算法优化BP神经网络的多变量光伏功率预测
文章介绍
基于WOA-BP鲸鱼算法优化BP神经网络的多变量光伏功率预测是一种利用鲸鱼优化算法(Whale Optimization Algorithm,WOA)来优化反向传播神经网络(Backpropagation Neural Network,BP)的方法,用于预测光伏电站的功率输出。
光伏电站的功率输出受多个变量的影响,如光照强度、温度、风速等。传统的BP神经网络可以用于建模并预测光伏功率,但其性能可能受到局部最优解的限制。
为了提高BP神经网络的性能,可以将WOA算法与BP神经网络相结合。WOA算法是一种基于仿生学的优化算法,模拟了鲸鱼群体的行为。它通过模拟鲸鱼的搜索行为来寻找最优解,并具有全局搜索和局部搜索的能力。
在这种方法中,首先使用BP神经网络对光伏功率进行预测,并计算预测误差。然后,将WOA算法应用于BP神经网络的权重和偏置参数,通过优化这些参数来减小预测误差。WOA算法的搜索过程会根据目标函数(即预测误差)进行调整,以寻找更优的参数组合。
通过WOA-BP算法的优化,可以提高光伏功率预测的准确性和性能,使其更适应实际应用场景,并且具备