✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着全球对可再生能源的需求不断增加,光伏发电作为一种清洁能源形式正受到越来越多的关注。在光伏发电系统中,对光伏功率进行准确预测对于系统的运行和管理至关重要。而基于BP神经网络的多变量光伏功率预测模型正成为一种有效的预测方法。
BP神经网络是一种常见的人工神经网络模型,它通过训练样本来学习输入与输出之间的映射关系,从而实现对未知数据的预测。在光伏功率预测中,BP神经网络可以通过输入光照强度、温度、风速等多个变量,来预测光伏功率的输出值。这种多变量的预测模型能够更准确地反映光伏发电系统的实际运行情况,从而提高预测的精度和可靠性。
在构建基于BP神经网络的多变量光伏功率预测模型时,需要进行以下步骤:
-
数据采集:首先需要收集光伏发电系统的运行数据,包括光照强度、温度、风速等多个变量的实时监测数据,以及对应的光伏功率输出数据。
-
数据预处理:对采集到的数据进行预处理,包括数据清洗、缺失值处理、数据标准化等,以确保数据的质量和一致性。
-
神经网络结构设计:确定BP神经网络的输入层、隐藏层和输出层的节点数,并选择合适的激活函数和学习算法。
-
模型训练:使用已有的数据对神经网络模型进行训练,通过不断调整权重和偏置来优化模型的拟合效果。
-
模型评估:使用测试集数据对训练好的模型进行评估,包括计算预测误差、评估模型的拟合度和泛化能力等。
通过以上步骤,可以构建一个基于BP神经网络的多变量光伏功率预测模型,并用于实际的光伏发电系统中。这种预测模型能够帮助发电系统管理者更好地了解系统的运行情况,及时采取措施进行调整和优化,从而提高光伏发电系统的效率和稳定性。
总之,基于BP神经网络的多变量光伏功率预测模型是一种有效的预测方法,它能够更准确地预测光伏功率的输出值,为光伏发电系统的运行和管理提供有力的支持。随着人工智能和大数据技术的不断发展,相信这种预测模型将会得到更广泛的应用和进一步的改进。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 范家铭.光伏发电并网的功率预测和控制策略[D].长沙理工大学,2019.
[2] 朱浩祎,于泳,王俊,等.计及雾霾影响的光伏功率短期预测方法:CN201910971238.1[P].CN110796292A[2023-12-24].
[3] 王政宇,王胜辉,李潇潇,等.基于人工鱼群优化BP神经网络的光伏功率预测算法[J].沈阳工程学院学报:自然科学版, 2022, 18(1):6.
[4] 张勃,张晓辉,姜军.基于BP神经网络的光伏发电功率预测模型[C]//中国高等学校电力系统及其自动化专业第二十七届学术年会.中国电机工程学会;燕山大学, 2011.