【Matlab光伏功率预测】基于BP神经网络的多变量光伏功率预测附MATLAB代码

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

随着全球对可再生能源的需求不断增加,光伏发电作为一种清洁能源形式正受到越来越多的关注。在光伏发电系统中,对光伏功率进行准确预测对于系统的运行和管理至关重要。而基于BP神经网络的多变量光伏功率预测模型正成为一种有效的预测方法。

BP神经网络是一种常见的人工神经网络模型,它通过训练样本来学习输入与输出之间的映射关系,从而实现对未知数据的预测。在光伏功率预测中,BP神经网络可以通过输入光照强度、温度、风速等多个变量,来预测光伏功率的输出值。这种多变量的预测模型能够更准确地反映光伏发电系统的实际运行情况,从而提高预测的精度和可靠性。

在构建基于BP神经网络的多变量光伏功率预测模型时,需要进行以下步骤:

  1. 数据采集:首先需要收集光伏发电系统的运行数据,包括光照强度、温度、风速等多个变量的实时监测数据,以及对应的光伏功率输出数据。

  2. 数据预处理:对采集到的数据进行预处理,包括数据清洗、缺失值处理、数据标准化等,以确保数据的质量和一致性。

  3. 神经网络结构设计:确定BP神经网络的输入层、隐藏层和输出层的节点数,并选择合适的激活函数和学习算法。

  4. 模型训练:使用已有的数据对神经网络模型进行训练,通过不断调整权重和偏置来优化模型的拟合效果。

  5. 模型评估:使用测试集数据对训练好的模型进行评估,包括计算预测误差、评估模型的拟合度和泛化能力等。

通过以上步骤,可以构建一个基于BP神经网络的多变量光伏功率预测模型,并用于实际的光伏发电系统中。这种预测模型能够帮助发电系统管理者更好地了解系统的运行情况,及时采取措施进行调整和优化,从而提高光伏发电系统的效率和稳定性。

总之,基于BP神经网络的多变量光伏功率预测模型是一种有效的预测方法,它能够更准确地预测光伏功率的输出值,为光伏发电系统的运行和管理提供有力的支持。随着人工智能和大数据技术的不断发展,相信这种预测模型将会得到更广泛的应用和进一步的改进。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 范家铭.光伏发电并网的功率预测和控制策略[D].长沙理工大学,2019.

[2] 朱浩祎,于泳,王俊,等.计及雾霾影响的光伏功率短期预测方法:CN201910971238.1[P].CN110796292A[2023-12-24].

[3] 王政宇,王胜辉,李潇潇,等.基于人工鱼群优化BP神经网络的光伏功率预测算法[J].沈阳工程学院学报:自然科学版, 2022, 18(1):6.

[4] 张勃,张晓辉,姜军.基于BP神经网络的光伏发电功率预测模型[C]//中国高等学校电力系统及其自动化专业第二十七届学术年会.中国电机工程学会;燕山大学, 2011.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值