一个文科小白的数据分析师之路


作者简介Introduction

杜雨:EasyCharts团队成员,R语言中文社区专栏作者。

兴趣方向为:Excel商务图表,R语言数据可视化,地理信息数据可视化。

个人公众号:数据小魔方(微信ID:datamofang) ,“数据小魔方”创始人。


往期回顾

网易云课堂Excel课程爬虫思路
左手用R右手Pyhon系列——趣直播课程抓取实战
Python数据抓取与可视化实战——网易云课堂人工智能与大数据板块课程实战
R语言网络数据抓取的又一个难题,终于攻破了!



大家好,我叫杜雨,就是那个公众号——“数据小魔方”的创建者和运营人,也是R语言中文社区多篇专栏文章的作者。

承蒙天善社区不弃,我在天善智能课堂上线了四门微课程——《搞定矢量图形编辑,让你的图表美出新高度》,《R语言可视化在商务图表中的应用》,《用游戏的心态玩转Excel黑科技》,《R语言爬虫实战案例分享》。

2017年回顾

2017年对于我来说,改变还是蛮大的,我从一个在校学生过渡成一个职场人(当然期间还是经历了很残酷、艰辛的挣扎)。

2015年毕业的时候(本科毕业),很迷茫的选择了考研(当时的想法差不多就是,一个学习经济学的文科僧,不知道该怎么择业,不想回到老家从事天天看脸色的职业、也不想随随便便的委屈自己做自己不太喜欢做的事情),所以随大流的选择了继续读研(因为实在迷茫啊不知道该干啥,然鹅我又读了老本行——经济学)。

好在我很早就意识到了这种危机感,索性在读研之初就坚定了自己要进入数据分析行业的方向,读研期间的时间还算过的充实(当然和一年拿到CPA\司考的小伙伴儿比起来,我还是觉得自己荒废了太多时间)。

(所以我有了两年半时间的缓冲期和转型期)

在2016年、2017年除了日常的学习功课以及学术任务之外,所有的精力几乎都投入到了Excel、R语言的学习中去,选择了数据可视化作为自己软件学习的方向(因为单纯的技能操作和语法是很枯燥的,必须有一个持续的学习方向)。

没有人带路、没有人指导,更没有防入坑指南。一腔热血、大把时间就这么挥洒完了,2017年踩着末班车,入门了Python,开始练习爬虫,SQL。

终于在18年秋招(也就是2017年9月份),有幸拿到了某O2O巨头的商业分析offer。

回顾2017年经历,最让我难忘的,我觉得是两年前定下的求职方向,一直没有因为父母、朋友、同学甚至老师的各种观点和周边外界环境的影响。

制定一个目标很容易,但是愿意付出足够的时间,并且竭尽全力的为了这个目标持续努力。这也许是数据分析行业高门槛(特别是大厂)的最重要原因。

求职之前

我花了将近一年半的时间研究Excel(一天一篇推文,讲解一个小功能或者图表实现方式);

花了将近6个月的时间入门R语言,1年的时间精进R语言数据操纵,6个月的时间集中精力攻破ggplot2;

半年时间入门Python(以上时间有重叠,合计是2年半);

期间也博览了数据可视化领域的各种主流著作、网站、资料以及工具组件等。

虽然勉强拿到了数据分析行业的入场券,但自知资历尚浅、专业背景欠佳、数理功底偏弱、分析能力仍待提高,路还有很长,仍需坚持努力。

以上是一个文科小白转行数据分析的艰难经历。

一路走来的感想

回顾这一路走过的各种坎坷,还是想给那些想我一样,因为专业背景限制而对数据分析行业又爱又恨、举棋不定的小伙伴儿们讲几点儿发自肺腑的建议:

1、在选择这条路之前,要思考再三,虽然这条路看着光鲜(至少收入类比其他行业不会太差)、看着很公平(要么牛逼、要么滚蛋),但也是一条不归路,也充满着未知、荆棘和绝望;

2、虽然这个行业有着天然的专业鄙视链(文理科的逻辑思维功底、编程语言接受程度上实实在在的存在差别,这也是甲方更信赖理科生的重要原因,因为社科类专业,很少有学校会严格的按照数理逻辑去制定学生的课程培养计划),但是并不代表文科生没有任何机会(因为往前推5年,大家都是文科生);

3、如果你要坚定的选择这条路,就必须克服各种依赖症,比如安装一个R语言软件,下载一个包都要在群里@别人,因为这种学习习惯决定着你必然会被同行的有心者远远的摔在后面,百度、谷歌、Stack Overflow永远像你免费敞开大门;

4、动手实践和实习参与项目是很好的数据科学或者数据分析的开端,只学不练假把式,只有直接用于实战,才能看出来你学的东西到底有多少能够落地,能够用于提升业务的价值;

5、在求职以前,倘若时间允许,把R语言、Python(数据科学相关模块)、SQL(可以选择一个平台,比如MySQL)这三大关卡早点过了。(如果你不想再天天加班补的话);

6、如果你还是在校学生,学会分清各种事情的轻重缓急,比如各种无聊拉人凑场子讲座、听课发礼品的营销洗脑课,各种……的无效应酬社交,如果全部都用在数据科学的学习上,你会发现你的时间多了很多,自然你也可以更早的追上同行的脚步;

7、脚踏实地的去走自己的路,不会的多写、多看、多问(问真正有价值的问题)、多总结、多交流,给自己足够的转行周期(如果你是科班出身的【统计、数学、计算机】,也许会走的顺风顺水,但也不可以掉以轻心,倘若不是,请一定要慎重选择,起码要给自己一到两年的转行缓冲期【具体视自己的专业背景和技术实力而定】,什么7天精通机器学习、三个月精通人工智能,你自己敢信嘛)

8、学会融会贯通不同领域的知识,触类旁通、横向迁移,这样学起来才有越学越有通透的感觉,否则你只能增加笔记本的厚度,徒增烦恼罢了。

未来的建议

保持一颗平常心,养成良好的作息习惯,时刻不忘学习,吸收新鲜知识和观点,融会贯通与总结提炼,锻炼好身体,这同时也是对自己的警示和建议。



往期精彩内容整理合集:

2017年R语言发展报告(国内)

R语言中文社区历史文章整理(作者篇)

R语言中文社区历史文章整理(类型篇)

相关课程推荐


R语言可视化在商务场景中的应用:

☟☟☟ 戳阅读原文,即刻加入课程。


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值