你那位开车不靠谱儿的朋友,就靠这个技术了 | 独家



硅谷Live / 实地探访 / 热点探秘 / 深度探讨


要问小探开车最怕什么?那绝对是恶劣天气和马路杀手。遇到雨雪雾,小探就开始哼 “借我借我一双慧~眼~吧~” 而遇到车技不行的人,小探只好祈祷他们车上的各种雷达能比他们靠谱点。


今天,小探独家采访了硅谷激光雷达公司 Cepton 的联合创始人及 CEO 裴军博士,听听他打算如何用新一代激光雷达,让大家开车更安全。



什么是激光雷达?


在聊 Cepton 之前,我们先简单聊聊什么是激光雷达。


现阶段,无人驾驶领域在感测周围环境时,主要有三种方式:摄像头、毫米波雷达、和激光雷达。


摄像头相信大家都不陌生,但摄像头的问题在于,天黑、起雾、雨雪等恶劣天气时看不清楚路况,不过它直观清晰,能看清其他两种雷达都看不到的东西(比如红绿灯的颜色);


毫米波雷达体积小巧、能看很远,还能看穿烟尘、雾霾,但它像个近视眼,看不清楚:比如它只知道前面有辆车,但看不清是不是在你的车道上,清晰度不够。


激光雷达呢,则是用发射激光束探测目标位置、速度等特征量的雷达。激光雷达分辨率高、能看清楚,但有两大问题:第一,成本昂贵、无法量产;第二,雨雪雾等极端天气下,很多激光雷达精度大幅下降。


尽管有这些缺点,激光雷达还是受到了从传统车厂到科技公司的欢迎:谷歌旗下无人车 Waymo 车顶,那个一直转转转的雷达,就是激光雷达。此外,福特、奥迪、宝马等也选择了激光雷达。


图自网络


三种方式各有优缺点,用谁好、不用谁好呢?


业界给的答案是:三种全都招呼上!既要有直观清晰的摄像头、也要有看得远、穿透烟雾的毫米波雷达、当然还要加上高精度的激光雷达。


而 Cepton 的目标,正是让激光雷达更便宜、更清晰。


“感知周围的元素”


位于硅谷腹地圣克拉拉的 Cepton 成立于 2016 年,由 4 位有斯坦福背景、且在业内有丰富经验的学霸创立。别看这家公司刚刚两岁,却已经有了 50 多家遍布硅谷、亚洲、德国的客户,4代产品、和一个 50 多人的团队了。


Cepton 技术员


成长如此迅速,很大程度上得益于创始人裴军丰富的行业经验:裴军早期在激光雷达老牌劲旅 Velodyne 任 VP of Engineering。我们刚才提到的 Waymo 车顶上转的激光雷达,就是当年裴军参与开发的产品。


离开 Velodyne 后,裴军先是开了另外一家和激光雷达并无关系的光学仪器公司。2015 年左右,随着公司逐渐获得成功,裴军开始在闲余时间做些咨询工作。机缘巧合,他发现市场上虽然对激光雷达有需求,但却怎么也找不到一种既便宜、又好用的激光雷达。


裴军敏锐地意识到:这是个创业的好机会!


天时地利,再有个 “人和” 就齐活了。就在这时,裴军联系到同样有斯坦福背景、且在精密仪器方面有丰富经验的半导体“老兵” Mark McCord。两人一拍即合,就有了今天的 Cepton。


裴军告诉小探,Cepton 这个词有着特殊含义:cep 是 perception(感知)的一部分,ton 来自 atom(原子)、photon(光子)等词。结合了这两个词的 Cepton ,意思正是 “感知周围的元素”。



而这个 “感知周围的元素” 如果运用在无人车上,就变成了无人车的 “眼睛”。无人车通过激光雷达的 “眼睛”,把周围环境告诉计算系统这个 “脑子”,车轮、发动机这些 “腿” 才知道往哪儿走。


当然,Cepton 作为“感知周围的元素”,除了可以应用在现在大热的无人车领域,其三维传感器还可以应用在任何需要 “感知周围环境” 的地方都有应用场景,比如安防系统、三维地图测绘等。


两派激光雷达的 “鹬蚌相争”


说到自动驾驶,怎能不提特斯拉?不过,尽管谷歌、奥迪、宝马等公司选了激光雷达,马斯克就是不!喜!欢!所以最新特斯拉上配的是增强版的毫米波雷达,而非激光雷达。


要知道,最高级别的自动驾驶平均一部车需要 2 到 5 个激光雷达。随着这两年自动驾驶越发火热,市场之巨大可想而知!


虽然市场涌入者众多,但基本都分为两大派:一派以老牌劲旅 Velodyne 为代表,另一派是开发小型固态廉价 LiDAR 传感器的公司 Quanergy。


但裴军发现,这两派各自都有比较大的问题:


Velodyne 的雷达“贵” 就一个字。其应用最广的 HDL64 价格高达 7万美元,比不少车还贵!显然,这种价位的雷达难以被广泛运用,旋转马达的可靠性也不能达到车规。 而且,车厂也不敢贸然用这么贵的零件,怕增加成本、价格太贵影响销量。


另一方面,Quanergy 的固态雷达虽然更便宜,却无法探测长距离。


被运用在车上的雷达,连 200 米都看不到怎么行?在德国这种车速快的国家,这个距离甚至需要更远。如果一个雷达只能看近距离,显然安全隐患很大。


而这就是固态激光雷达这种技术思路的严重缺陷:看不远。


聊到这儿,裴军还告诉了小探一个有趣的小细节:裴军中学时很喜欢读科普读物。一次,书里提到爱因斯坦特别喜欢做思想实验。思想实验,就是纯靠想象力进行的、在现实中基本无法实现的实验,比如绝对光滑、毫无摩擦力的表面。


爱因斯坦的 “思想实验” 对裴军影响深远,也成了裴军左思右想后,大胆认为 Quanergy 的技术思路有缺陷的原因。


裴军博士在车间工作


没想到,这个思想实验还真灵!从 2012 到现在,Quanergy 虽然一直埋头研究产品,但做出来的东西果然 “见光死”,无法很好地在阳光下工作,此外还有其他一些局限性。


看来激光雷达的两大派别,都各自有缺陷。Cepton 因此决定不走寻常路,用 “新技术+现有元器件” 的独特方式,把两种方式取长补短,在提升性能的同时降低成本。


野心不小,可是如何实现呢?


Cepton 微动技术:取长补短


Cepton 的技术核心之一,就是从两派主流技术里取长补短的微动技术(Micro Motion Technology,简称 MMT)。Cepton 的雷达虽然也有动件,但是一个看不见的、微动的动件。


什么是微动原理?裴军给小探举了个例子:车里的喇叭或音响,一打开发出声音时如果用手摸,手就会感到震动。MMT 和这个原理有相似之处,而这也是 Cepton 的激光雷达成像的独特方法。


Cepton 产品 “SORA” 扫描建筑图 / 图自 Cepton


目前,Cepton 已申请 5 项核心技术专利,而 Cepton 技术突破的成果之一,就是极大地提高了纵向分辨率这个激光雷达的传统软肋。


“纵向分辨率” 是什么?


裴军打了个比方:可以把 Velodyne 这种在车顶旋转的激光雷达想象成是一把刀,放在车顶上转着,你的目标是没有人或者物能接近你。在以刀半径为圆的平面内,的确很安全。但刀是一个平面,人家一低头,你的防御就没用了。


怎么办呢?那就再加一把刀!两把刀转起来,中间有一条缝,比这个缝小的东西,还是可以钻进来。那就再加一把!以此类推,为了提高覆盖度可以一直往上加,每个缝隙就越来越小、能钻进两把刀片之间的东西也就越少、你也就越安全。


这两把刀之间的缝隙,就是 “纵向分辨率”。


纵向分辨率不够,正是 Velodyne 的设计的重要缺陷。为了弥补这个缺陷,Velodyne 就 “多加刀片”。这种办法固然有用,但成本也就上去了,这就是为什么他们会有 70000 多美元一个的激光雷达。


Cepton 的产品就大大提高了纵向分辨率,“在垂直和水平方向上,Cepton 的分辨率都能达到 0.2 度 … Cepton 激光雷达在分辨率上是传统、旋转式激光雷达的 4-5 倍。”


Cepton 新一代雷达 Vista


除了安全性得到提升,Cepton 也不断挑战激光雷达的价格新低。其中原因之一,就是 Cepton 只用商店里能买到的元器件,“不用等任何人的发明”。


别看元器件都是现有的,Cepton 用复杂的封装技术(packaging technology),和微动原理组合在一起,就能把它们变成一个成像的激光雷达。

Cetpon 最新一代产品 Vista / 图自 Cepton


这就好比特斯拉的电池,其实就是随处能买到的 18650 电池。虽然电池本身不是特斯拉发明的,但特斯拉就能做到把电池组合成一个电池包,再加上水冷、散热等等,构成特斯拉独有的电池。


Cepton 也是如此,用现有的元器件,以新技术把它们组合成新的激光雷达。正是这种突破性,才能在突破性能新高的同时,还不断降低价格。



Cepton 的技术实力除了离 “让激光雷达更安全、更便宜” 的目标越来越近,也吸引到了英伟达这样的业内领袖。小探注意到,在目前激光雷达领域的 40 多家公司里,英伟达与 Cepton 的合作最为密切。就在三月底,Cepton 还在英伟达的 GTC 盛会上亮了一相!


发展方向:更小更省、更强大


谈及 Cepton 未来发展方向时,裴军用 “一升三降” 概括:提升性能,同时降低功耗、体积、成本。


对于激光雷达来说,“提升性能” 当然就意味着看得更远、更清晰,但降低功耗、体积、成本同样重要。


激光雷达多小才够小?回答这个问题时,裴军解释道,激光雷达小到一定程度后(比如足以放进车灯内、防撞杠上、后视镜等不影响车外型的部位),就不用再追求更小了。小巧的体积使得车厂可以自己选择把激光雷达放在哪里,因而也拥有更大的自由度。


测试版车顶 6 个雷达 / 图自 Cepton


至于制作激光雷达的成本,也会随着未来激光雷达的普及逐渐降到两三百美元左右。与现在市场上的激光雷达相比,便宜得不是一个数量级,裴军认为可能 “会和制造一部手机的成本差不多”。


而在谈到行业趋势时,裴军提道,激光雷达的硬件提升是基本要求。不过,在硬件提升到一定程度后,就变成了软件、智能的比拼。也就是说,未来更加智能的激光雷达,除了感知周围空间,还能有识别物体、采集数据、传输数据等高级玩法...


不过说实话,小探的愿望很朴素:到时给自己的爱车装它几个激光雷达,什么风霜雨雪、远光狗闪光狗雾灯狗加塞狗,通通都不怕啦!



推荐阅读

区块链报告 脑机接口报告 

硅谷人工智能 | 斯坦福校长

卫哲 | 姚劲波 | 胡海泉 

垂直种植 | 无人车

王者荣耀 | 返老还童 









非常抱歉给您带来困扰。我再次检查了之前给出的代码,并发现了问题。在计算Expected_RI时,我没有正确计算预期的TP和FP值。以下是修正后的计算调整兰德指数的程序示例: ```matlab % 真实标签 true_labels = [1, 1, 2, 2, 2, 3, 3, 4, 4, 4]; % 聚类结果 cluster_result = [1, 1, 2, 2, 3, 3, 3, 4, 4, 4]; % 计算聚类结果的调整兰德指数 n_samples = numel(true_labels); TP = 0; FP = 0; FN = 0; TN = 0; for i = 1:n_samples for j = i+1:n_samples if true_labels(i) == true_labels(j) && cluster_result(i) == cluster_result(j) TP = TP + 1; elseif true_labels(i) ~= true_labels(j) && cluster_result(i) == cluster_result(j) FP = FP + 1; elseif true_labels(i) == true_labels(j) && cluster_result(i) ~= cluster_result(j) FN = FN + 1; else TN = TN + 1; end end end % 计算Expected_RI n_pairs = nchoosek(n_samples, 2); Expected_TP = nchoosek(sum(histcounts(true_labels)), 2); Expected_FP = n_pairs - Expected_TP; Expected_RI = (Expected_TP + Expected_FP) * (Expected_TP + FN) / n_pairs; % 计算调整兰德指数(ARI) RI = (TP + TN) / (TP + FP + FN + TN); ARI = (RI - Expected_RI) / max((Expected_TP + FN) * (Expected_TP + FP) / n_pairs - Expected_RI, 1e-10); disp(['Adjusted Rand Index (ARI): ', num2str(ARI)]); ``` 在上述修正后的程序中,我修改了计算Expected_RI和调整兰德指数(ARI)的部分。使用了 `histcounts` 函数来计算真实标签中每个类别的数量,然后根据这些数量计算了预期的TP和FP值。最后,根据修正后的Expected_RI计算了调整兰德指数(ARI)。 请再次尝试运行这个修正后的程序,应该可以得到正确的结果。非常抱歉给您带来了困扰,如果您有任何其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值