[机器学习笔记]二:Classification and logistic regression(分类和逻辑回归)

在前面我们讨论线性回归的问题,现在我们讲讨论二元分类的问题。二元分类的值是一个离散的值,仅仅为0或1.

1. Logistic regression(逻辑回归)

在讨论线性回归的时候,我们引入了评判函数。尽管我们可以用线性回归的评判函数来评判逻辑回归,但是这通常不会取得好的效果,因此我们将使用新的评判函数

g(z)=11+ezz=θTx(1) (1) g ( z ) = 1 1 + e − z , 其 中 z = − θ T x

我们称这个函数为logistic function或sigmoid function.对g(z)求导,可以得到
g(z)=g(z)(1g(z))(2) (2) g ( z ) ′ = g ( z ) ( 1 − g ( z ) )

可以得到
p(y|x;θ)=(hθ(x))y(1hθ(x))1y(3) (3) p ( y | x ; θ ) = ( h θ ( x ) ) y ( 1 − h θ ( x ) ) 1 − y

那么评判z参数的似然函数为
L(θ)=i=1m(hθ(x(i)))y(i)(1hθ(x(i)))1y(i)(4) (4) L ( θ ) = ∏ i = 1 m ( h θ ( x ( i ) ) ) y ( i ) ( 1 − h θ ( x ( i ) ) ) 1 − y ( i )


l(θ)=logL(θ)(5) (5) l ( θ ) = l o g L ( θ )

我们可以推导出
1)当 l(θ) l ( θ ) 取得最大值时, L(θ) L ( θ ) 取得最大值
2) θjl(θ)=(yhθ(x))xj ∂ ∂ θ j l ( θ ) = ( y − h θ ( x ) ) x j
根据这个,我们可以得出梯度下降的规则。

2. Digression: The perceptron learning algorithm

我们前面的函数的值都是连续的,而事实上我们需要一些离散的值,那么只要制定一个分界线,其上为1,其下为0,就能实现这个需求。

3. Another algorithm for maximizing l(θ) l ( θ )

现在我们要介绍牛顿法,用来求最大似然值,牛顿法的总体思想,是不断进行 θ=θf(θ)fθ θ = θ − f ( θ ) f ′ θ ,迭代的结果便是 f(θ)=0 f ( θ ) = 0
当然,我们前面的 θ θ 是一个向量,因此不能直接代入牛顿法中求值,因此我们要推广牛顿法,推广后的牛顿法公式如下:

θ=θH1θl(θ)(54) (54) θ = θ − H − 1 ∇ θ l ( θ )

其中
Hij=2l(θ)θiθj(55) (55) H i j = ∂ 2 l ( θ ) ∂ θ i ∂ θ j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值