行列式
主要名词概念
逆序、逆序数、对换、奇偶排列、n阶行列式、上下三角形行列式、对角行列式、转置行列式、余子式、代数余子式、k阶子式、k阶子式的余子式、k阶子式的代数余子式、对称行列式、反对称行列式、系数行列式、零解、非零解
n阶行列式
二、三阶行列式的概念、定义
二阶行列式
行列式的概念是从解线性方程组的问题中产生的,比如二元线性方程组:
{a11x1+a12x2=b1a21x1+a22x2=b2
\LARGE
\left\{\begin{matrix}
a_{11}x_1 + a_{12}x_2 = b_1 \\
a_{21}x_1 + a_{22}x_2 = b_2 \\
\end{matrix}\right.
⎩⎨⎧a11x1+a12x2=b1a21x1+a22x2=b2
用加减消元法,先消去 x2\large x_2x2 得:
(a11a22−a12a21)x1=b1a22−b2a12
\LARGE
(a_{11}a_{22} - a_{12}a_{21}) x_1 = b_1 a_{22} - b_2 a_{12}
(a11a22−a12a21)x1=b1a22−b2a12
同样的方法消去 x1\large x_1x1 得:
(a11a22−a12a21)x2=b2a11−b1a21
\LARGE
(a_{11}a_{22} - a_{12}a_{21}) x_2 = b_2 a_{11} - b_1 a_{21}
(a11a22−a12a21)x2=b2a11−b1a21
因此,当 (a11a22−a12a21)≠0\large (a_{11}a_{22} - a_{12}a_{21}) \ne 0(a11a22−a12a21)=0 时有唯一解,即:
x1=b1a22−b2a12a11a22−a12a21,x2=b2a11−b1a21a11a22−a12a21
\LARGE
x_1 = \frac{b_1 a_{22} - b_2 a_{12}} {a_{11}a_{22} - a_{12}a_{21}} ,
x_2 = \frac{b_2 a_{11} - b_1 a_{21}} {a_{11}a_{22} - a_{12}a_{21}}
x1=a11a22−a12a21b1a22−b2a12,x2=a11a22−a12a21b2a11−b1a21
为了方便记忆,我们定义一个符号:
∣a11a12a21a22∣=a11a22−a12a21
\LARGE
\begin{vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}
∣∣a11a21a12a22∣∣=a11a22−a12a21
这样规定的记号 ∣a11a12a21a22∣\large
\begin{vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{vmatrix}∣∣a11a21a12a22∣∣ 称为 二阶行列式 ,它含有两行两列,横为行,竖为列。
行列式中,数 aij(i,j=1,2)\large a_{ij} (i,j = 1,2)aij(i,j=1,2) 称为行列式的元素,第一个下标 i\large ii 称为 行标 ,第二个下标 j\large jj 称为 列标 。比如 a21\large a_{21}a21 就是第二行第一列的元素。
二阶行列式的计算
由上面的定义,我们可以知道二阶行列式是这样两项的代数和:
- 从左上角到右下角,也就是实线,称为 行列式的主对角线
- 从右上角到左下角,也就是虚线,称为 行列式的次对角线
计算的话,就是主对角线元素相乘,减去次对角线上的元素相乘。
例题:
设 D=∣λ−112λ∣\large D= \begin{vmatrix} \lambda -1 & 1 \\ 2 & \lambda \end{vmatrix}D=∣∣λ−121λ∣∣ ,问:当 $\large \lambda $ 为何值时,D≠0\large D\ne 0D=0 ?
解:
D=∣λ−112λ∣=(λ−1)λ−2=(λ−2)(λ+1)
\LARGE
D= \begin{vmatrix}
\lambda -1 & 1 \\
2 & \lambda
\end{vmatrix} = (\lambda -1)\lambda -2 = (\lambda -2)(\lambda +1)
D=∣∣λ−121λ∣∣=(λ−1)λ−2=(λ−2)(λ+1)
所以当 (λ−2)(λ+1)≠0\large (\lambda -2)(\lambda +1) \ne 0(λ−2)(λ+1)=0 时,D≠0\large D\ne 0D=0 。即 λ≠2,λ≠−1\large \lambda \ne 2, \lambda \ne -1λ=2,λ=−1 。
三阶行列式
同样的,由上述二阶行列式,我们可以衍生出三阶行列式,对于三元线性方程组:
{a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3
\LARGE
\left\{\begin{matrix}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\
a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\
a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \\
\end{matrix}\right.
⎩⎨⎧a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3
同前面一样,为了方便记忆,我们引入记号:
∣a11a12a13a21a22a23a31a32a33∣=a11a22a33+a12a23a31+a13a21a32−a13a22a31−a12a21a33−a11a23a32
\LARGE
\begin{array}{l}
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}
\end{array}
∣∣a11a21a31a12a22a32a13a23a33∣∣=a11a22a33+a12a23a31+a13a21a32−a13a22a31−a12a21a33−a11a23a32
上面就称为 三阶行列式 。它含有三行三列,是 3!=6\large 3! = 63!=6 项的代数和。
三阶行列式的计算
和二阶行列式一样可以用画线法来进行记忆,下面这个方法称为三阶行列式的 对角线展开法 :
- 三个实线上的元素分别相乘然后相加,再减去每个虚线上的元素相乘
- 对角线展开法 仅适用与三阶及以下的行列式计算
排列和逆序
❗️ 定义:由1,2,…,n组成的一个有序数组称为一个n级排列。
列如,123,是一个3级排序,4132,2143,1234都说4级排序。n级排列共有 n!\large n!n! 个。
❗️ 定义:在一个n级排列中,如果较大的数排列在较小的数前面,则它们构成一个逆序,一个n级排列中逆序的总和称为它的 逆序数 。排列 i1i2...in\large i_1i_2...i_ni1i2...in 的逆序数记为 N(i1i2...in)\large N(i_1i_2...i_n)N(i1i2...in) 。
- 逆序数为偶数称为 **偶排列 **
- 逆序数为奇数称为 奇排列
例如,排列 4132 中,4和1,4和3,4和2,3和2,各构成一个逆序,总共4个逆序,即 N(4132)=4\large N(4132)=4N(4132)=4 ,是一个偶排列。

计算逆序数的时候可以从第一个数开始往后比较,如:
- ①分别和②③④比较,如果①比较大,就加一
- ②分别和③④比较,如果②比较大,就加一
- ③和④比较,如果③比较大,就加一
❗️ 定理:一个排列经过一个对换后(排列中的任意两个数交换位置),奇偶性改变。
由上述定理可以得到下面一个重要的结论
❗️ 定理:在全部n级别排列中,偶排列和奇排列各占一半,都有 n!2(n≥2)\large \frac{n!}{2} (n\ge 2)2n!(n≥2) 个 。
n阶行列式
由二阶、三阶行列式的概念推广到n阶:
❗️ 定义:由 n2\large n^2n2 个元素 aij(i,j=1,2,...,n)\large a_{ij} (i,j=1,2,...,n)aij(i,j=1,2,...,n) 组成的记号
∣a11a12...a1na21a22...a2n............an1an2...ann∣
\LARGE
\begin{vmatrix}
a_{11} & a_{12} & ... & a_{1n} \\
a_{21} & a_{22} & ... & a_{2n} \\
... & ... & ... & ... \\
a_{n1} & a_{n2} & ... & a_{nn} \\
\end{vmatrix}
∣∣a11a21...an1a12a22...an2............a1na2n...ann∣∣
称为 n阶行列式 。
n阶行列式的计算
将行列式 ∣a11a12...a1na21a22...a2n............an1an2...ann∣\large \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{vmatrix}∣∣a11a21...an1a12a22...an2............a1na2n...ann∣∣ 简记为 D=∣aij∣\large D=\begin{vmatrix}a_{ij}\end{vmatrix}D=∣∣aij∣∣ 。
并将元素 a11,a22,...,ann\large a_{11},a_{22},...,a_{nn}a11,a22,...,ann (从左上角到右下角的对角线)称为 主对角线 ;把元素 a1n,a2,n−1,...,an1\large a_{1n},a_{2,n-1},...,a_{n1}a1n,a2,n−1,...,an1 (从右上角到左下角的对角线)称为 次对角线 。
按行展开计算
D=∑j1j2...jn(−1)N(j1j2...jn)a1j1a2j2...anjn \LARGE D=\sum_{j_1j_2...j_n}^{} (-1)^{N(j_1j_2...j_n)} a_{1j_1}a_{2j_2}...a_{nj_n} D=j1j2...jn∑(−1)N(j1j2...jn)a1j1a2j2...anjn
也就是 行 是固定顺序,列 是按照排列来的,因为有n列,所以有 n!\large n!n! 项。又因为在n级排列中,奇偶排列各占一半,符号是根据奇偶排列来的,所有正负项也各占一半。
一般项为:
(−1)N(j1j2...jn)a1j1a2j2...anjn
\LARGE
(-1)^{N(j_1j_2...j_n)} a_{1j_1}a_{2j_2}...a_{nj_n}
(−1)N(j1j2...jn)a1j1a2j2...anjn
按列展开计算
D=∑i1i2...in(−1)N(i1i2...in)ai11ai22...ainn \LARGE D=\sum_{i_1i_2...i_n}^{} (-1)^{N(i_1i_2...i_n)} a_{i_11}a_{i_22}...a_{i_nn} D=i1i2...in∑(−1)N(i1i2...in)ai11ai22...ainn
一般项为:
(−1)N(i1i2...in)ai11ai22...ainn
\LARGE
(-1)^{N(i_1i_2...i_n)} a_{i_11}a_{i_22}...a_{i_nn}
(−1)N(i1i2...in)ai11ai22...ainn
既不按行也不按列
n行列式的一般项,可以记为:

上三角、下三角、对角行列式
下三角行列式:
D=∣a1100...0a21a220...0...............an1an2an3...ann∣=a11a22a33...ann \LARGE D= \begin{vmatrix} a_{11} & 0 & 0 & ... & 0 \\ a_{21} & a_{22} & 0 & ... & 0 \\ ... & ... & ... & ... & ... \\ a_{n1} & a_{n2} & a_{n3} & ... & a_{nn} \\ \end{vmatrix} = a_{11}a_{22}a_{33}...a_{nn} D=∣∣a11a21...an10a22...an200...an3............00...ann∣∣=a11a22a33...ann
它的值等于其主对角线上的所有元素的乘积
上三角行列式:
D=∣a11a12a13...a1n0a22a23...a2n...............000...ann∣=a11a22a33...ann \LARGE D= \begin{vmatrix} a_{11} & a_{12} & a_{13} & ... & a_{1n} \\ 0 & a_{22} & a_{23} & ... & a_{2n} \\ ... & ... & ... & ... & ... \\ 0 & 0 & 0 & ... & a_{nn} \\ \end{vmatrix} = a_{11}a_{22}a_{33}...a_{nn} D=∣∣a110...0a12a22...0a13a23...0............a1na2n...ann∣∣=a11a22a33...ann
它的值也等于其主对角线上的所有元素的乘积
对角行列式:
D=∣a1100...00a220...0...............000...ann∣=a11a22a33...ann \LARGE D= \begin{vmatrix} a_{11} & 0 & 0 & ... & 0 \\ 0 & a_{22} & 0 & ... & 0 \\ ... & ... & ... & ... & ... \\ 0 & 0 & 0 & ... & a_{nn} \\ \end{vmatrix} = a_{11}a_{22}a_{33}...a_{nn} D=∣∣a110...00a22...000...0............00...ann∣∣=a11a22a33...ann
它的值也等于其主对角线上的所有元素的乘积
次对角线上
比如类似这种的
D=∣0...0a1n0...a2,n−1a1n............an1...an,n−1a1n∣=(−1)n(n−1)2a1na2,n−1...an1
\LARGE
D=
\begin{vmatrix}
0 & ... & 0 & a_{1n} \\
0 & ... & a_{2,n-1} & a_{1n} \\
... & ... & ... & ... \\
a_{n1} & ... & a_{n,n-1} & a_{1n}
\end{vmatrix}
= (-1)^{\frac{n(n-1)}{2}} a_{1n}a_{2,n-1}...a_{n1}
D=∣∣00...an1............0a2,n−1...an,n−1a1na1n...a1n∣∣=(−1)2n(n−1)a1na2,n−1...an1
它的值等于其次主对角线上的所有元素的乘积,并且是带符号的。
例题
例1:
计算行列式
D=∣0200003000041000∣
\LARGE
D=
\begin{vmatrix}
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4 \\
1 & 0 & 0 & 0
\end{vmatrix}
D=∣∣0001200003000040∣∣
仔细观察上面的行列式会发现每行只有一个元素为不为0,而这4给元素又在不同列。
我们按行展开,只有一项非零项,其余项都会为0,即:
a12a23a34a41=2×3×4×1=24
\LARGE
a_{12}a_{23}a_{34}a_{41} = 2 \times 3 \times 4 \times 1=24
a12a23a34a41=2×3×4×1=24
又因为2341是奇排列,因此这一项前面应该为负号,所以:
D=−a12a23a34a41=−24
\LARGE
D = -a_{12}a_{23}a_{34}a_{41} = -24
D=−a12a23a34a41=−24
例2:

行列式的性质
转置行列式
设有n阶行列式
D=∣a11a12...a1na21a22...a2n............an1an2...ann∣
\LARGE
D=
\begin{vmatrix}
a_{11} & a_{12} & ... & a_{1n} \\
a_{21} & a_{22} & ... & a_{2n} \\
... & ... & ... & ... \\
a_{n1} & a_{n2} & ... & a_{nn} \\
\end{vmatrix}
D=∣∣a11a21...an1a12a22...an2............a1na2n...ann∣∣
将D的行与列进行交换后得到的行列式,称为D的 转置行列式 ,记为 DT\large D^TDT 或 D′\large D^{'}D′ 。即:
D=∣a11a21...an1a12a22...an2............a1na2n...ann∣
\LARGE
D=
\begin{vmatrix}
a_{11} & a_{21} & ... & a_{n1} \\
a_{12} & a_{22} & ... & a_{n2} \\
... & ... & ... & ... \\
a_{1n} & a_{2n} & ... & a_{nn} \\
\end{vmatrix}
D=∣∣a11a12...a1na21a22...a2n............an1an2...ann∣∣
显然 (DT)T=D\large (D^T)^T = D(DT)T=D 。
❗️ 性质:对于任何行列式D,均有 DT=D\large D^T = DDT=D 。
证:记D的一般项为
(−1)N(j1j2...jn)a1j1a2j2...anjn
\LARGE
(-1)^{N(j_1j_2...j_n)} a_{1j_1}a_{2j_2}...a_{nj_n}
(−1)N(j1j2...jn)a1j1a2j2...anjn
它的元素在 D\large DD 中位于不同行不同列,因此在 DT\large D^TDT 中也位于不同行不同列,所以这n个元素在 DT\large D^TDT 中应该为:
aj11aj22...ajnn
\LARGE
a_{j_11}a_{j_22}...a_{j_nn}
aj11aj22...ajnn
把 j\large jj 换成 i\large ii ,就是列展开的形式:
(−1)N(i1i2...in)ai11ai22...ainn
\LARGE
(-1)^{N(i_1i_2...i_n)} a_{i_11}a_{i_22}...a_{i_nn}
(−1)N(i1i2...in)ai11ai22...ainn
所以 DT=D\large D^T = DDT=D 。
❗️ 性质:行列式两行(列)互换,其值变号。即:
∣a11a12...a1n............ai1ai2...ain............as1as2...asn............an1an2...ann∣=−∣a11a12...a1n............as1as2...asn............ai1ai2...ain............an1an2...ann∣
\LARGE
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
a_{i1}& a_{i2} & ... & a_{in}\\
... & ... & ... & ...\\
a_{s1}& a_{s2} & ... & a_{sn}\\
...& ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix} = -
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
a_{s1}& a_{s2} & ... & a_{sn}\\
... & ... & ... & ...\\
a_{i1}& a_{i2} & ... & a_{in}\\
...& ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix}
∣∣a11...ai1...as1...an1a12...ai2...as2...an2.....................a1n...ain...asn...ann∣∣=−∣∣a11...as1...ai1...an1a12...as2...ai2...an2.....................a1n...asn...ain...ann∣∣
❗️ 性质:将行列式的某一行或某一列中所有元素同乘以数k,等于用这个数k乘该行列式:
∣a11a12...a1n............kai1kai2...kain............an1an2...ann∣=k∣a11a12...a1n............ai1ai2...ain............an1an2...ann∣
\LARGE
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
ka_{i1}& ka_{i2} & ... & ka_{in}\\
... & ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix} = k
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
a_{i1}& a_{i2} & ... & a_{in}\\
... & ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix}
∣∣a11...kai1...an1a12...kai2...an2...............a1n...kain...ann∣∣=k∣∣a11...ai1...an1a12...ai2...an2...............a1n...ain...ann∣∣
利用上述方法可以进行提取公因数。
❗️ 性质:如果行列式中有两行(列)对应的 元素相同 ,或 成比例 ,则该行列式为0。
❗️ 性质:如果行列式中某一行(列)对应的 元素全为0 ,则该行列式为0。
❗️ 性质:若行列式的某一行(列)中所有元素都是两项的和,则该行列式可以表示为两个行列式相加。即:
∣a11a12...a1n............bi1ci1b21ci2...bincin............an1an2...ann∣=∣a11a12...a1n............bi1b21...bin............an1an2...ann∣+∣a11a12...a1n............ci1c21...cin............an1an2...ann∣
\LARGE
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
b_{i1}c_{i1}& b_{21}c_{i2} & ... & b_{in}c_{in}\\
... & ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix} = \\\LARGE
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
b_{i1}& b_{21} & ... & b_{in}\\
... & ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix} +
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
c_{i1}& c_{21} & ... & c_{in}\\
... & ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix}
∣∣a11...bi1ci1...an1a12...b21ci2...an2...............a1n...bincin...ann∣∣=∣∣a11...bi1...an1a12...b21...an2...............a1n...bin...ann∣∣+∣∣a11...ci1...an1a12...c21...an2...............a1n...cin...ann∣∣
❗️ ⭐️ ⭐️⭐️性质:将行列式一行(列)中所有元素都乘以数k后加到另外一行(列)的对应元素上,行列式值不变。即:
∣a11a12...a1n............ai1ai2...ain............aj1aj2...ajn............an1an2...ann∣=∣a11a12...a1n............ai1ai2...ain............aj1+kai1aj2+kai2...ajn+kain............an1an2...ann∣
\LARGE
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
a_{i1}& a_{i2} & ... & a_{in}\\
... & ... & ... & ...\\
a_{j1}& a_{j2} & ... & a_{jn}\\
...& ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix} = \\\LARGE
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
a_{i1}& a_{i2} & ... & a_{in}\\
... & ... & ... & ...\\
a_{j1}+ka_{i1}& a_{j2}+ka_{i2} & ... & a_{jn}+ka_{in}\\
...& ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix}
∣∣a11...ai1...aj1...an1a12...ai2...aj2...an2.....................a1n...ain...ajn...ann∣∣=∣∣a11...ai1...aj1+kai1...an1a12...ai2...aj2+kai2...an2.....................a1n...ain...ajn+kain...ann∣∣
可以想一下线性方程组,在计算过程中,其中一个式子乘一个系数,加到另一个式子中进行计算、消元。
证:
可以上一个性质我们可以把行列式拆开
∣a11a12...a1n............ai1ai2...ain............aj1+kai1aj2+kai2...ajn+kain............an1an2...ann∣=∣a11a12...a1n............ai1ai2...ain............aj1aj2...ajn............an1an2...ann∣+∣a11a12...a1n............ai1ai2...ain............kai1kai2...kain............an1an2...ann∣
\LARGE
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
a_{i1}& a_{i2} & ... & a_{in}\\
... & ... & ... & ...\\
a_{j1}+ka_{i1}& a_{j2}+ka_{i2} & ... & a_{jn}+ka_{in}\\
...& ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix} = \\\LARGE
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
a_{i1}& a_{i2} & ... & a_{in}\\
... & ... & ... & ...\\
a_{j1}& a_{j2} & ... & a_{jn}\\
...& ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix} +
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
a_{i1}& a_{i2} & ... & a_{in}\\
... & ... & ... & ...\\
ka_{i1}& ka_{i2} & ... & ka_{in}\\
...& ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix}
∣∣a11...ai1...aj1+kai1...an1a12...ai2...aj2+kai2...an2.....................a1n...ain...ajn+kain...ann∣∣=∣∣a11...ai1...aj1...an1a12...ai2...aj2...an2.....................a1n...ain...ajn...ann∣∣+∣∣a11...ai1...kai1...an1a12...ai2...kai2...an2.....................a1n...ain...kain...ann∣∣
有因为第二个行列式,某两行成倍数关系,所以第二个行列式等于0,所以:
∣a11a12...a1n............ai1ai2...ain............aj1+kai1aj2+kai2...ajn+kain............an1an2...ann∣=∣a11a12...a1n............ai1ai2...ain............aj1aj2...ajn............an1an2...ann∣+0
\LARGE
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
a_{i1}& a_{i2} & ... & a_{in}\\
... & ... & ... & ...\\
a_{j1}+ka_{i1}& a_{j2}+ka_{i2} & ... & a_{jn}+ka_{in}\\
...& ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix} = \\\LARGE
\begin{vmatrix}
a_{11}& a_{12} & ... & a_{1n}\\
...& ... & ... & ...\\
a_{i1}& a_{i2} & ... & a_{in}\\
... & ... & ... & ...\\
a_{j1}& a_{j2} & ... & a_{jn}\\
...& ... & ... & ...\\
a_{n1}& a_{n2} & ... & a_{nn}\\
\end{vmatrix} + 0
∣∣a11...ai1...aj1+kai1...an1a12...ai2...aj2+kai2...an2.....................a1n...ain...ajn+kain...ann∣∣=∣∣a11...ai1...aj1...an1a12...ai2...aj2...an2.....................a1n...ain...ajn...ann∣∣+0
例题

行列式按某一行(列)展开
一般来说低阶的计算比高阶行列式的计算简便,所以在计算行列式时,可以考虑将高阶行列式转换为低阶行列式。
余子式和代数余子式
❗️ 定义:在 n(n>1)\large n(n>1)n(n>1) 阶行列式 D=∣aij∣\large D = \begin{vmatrix} a_{ij} \end{vmatrix}D=∣∣aij∣∣ 中,将元素 aij\large a_{ij}aij 所在的第 i\large ii 行和第 j\large jj 列划去(删除),剩下的元素按照原来的相对位置所构成的 n−1\large n-1n−1 阶行列式,称为 D\large DD 中元素 aij\large a_{ij}aij 的 余子式 ,记为 Mij\large M_{ij}Mij 。
例:
D=∣a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44∣
\LARGE
D=
\begin{vmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{vmatrix}
D=∣∣a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44∣∣
a23\large a_{23}a23 的 余子式 为:
M23=∣a11a12a14a31a32a34a41a42a44∣
\LARGE
M_{23}=
\begin{vmatrix}
a_{11} & a_{12} & a_{14} \\
a_{31} & a_{32} & a_{34} \\
a_{41} & a_{42} & a_{44}
\end{vmatrix}
M23=∣∣a11a31a41a12a32a42a14a34a44∣∣
在 aij\large a_{ij}aij 的余子式 Mij\large M_{ij}Mij 前面加上一个符号 (−1)i+j\large (-1)^{i+j}(−1)i+j 后,就称为 aij\large a_{ij}aij 在 D\large DD 中的 代数余子式 ,记为 Aij\large A_{ij}Aij ,即 Aij=(−1)i+jMij\large A_{ij}=(-1)^{i+j} M_{ij}Aij=(−1)i+jMij 。
上面例子中, a23\large a_{23}a23 的 代数余子式 为:
A23=(−1)2+3∣a11a12a14a31a32a34a41a42a44∣=−∣a11a12a14a31a32a34a41a42a44∣
\LARGE
A_{23}= (-1)^{2+3}
\begin{vmatrix}
a_{11} & a_{12} & a_{14} \\
a_{31} & a_{32} & a_{34} \\
a_{41} & a_{42} & a_{44}
\end{vmatrix} = -
\begin{vmatrix}
a_{11} & a_{12} & a_{14} \\
a_{31} & a_{32} & a_{34} \\
a_{41} & a_{42} & a_{44}
\end{vmatrix}
A23=(−1)2+3∣∣a11a31a41a12a32a42a14a34a44∣∣=−∣∣a11a31a41a12a32a42a14a34a44∣∣
行列式按某一行(列)展开
❗️ 定理:(行列式按行(列)展开)n阶行列式 D=∣aij∣\large D = \begin{vmatrix} a_{ij} \end{vmatrix}D=∣∣aij∣∣ 等于它的任意一行(列)中各元素与其对应的 代数余子式乘积的和 ,即:
D=ai1Ai1+ai2Ai2+...+ainAin,i=(1,2,...,n)
\LARGE
D=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in} , i = (1,2,...,n)
D=ai1Ai1+ai2Ai2+...+ainAin,i=(1,2,...,n)
或
D=a1jA1j+a2jA2j+...+anjAnj,j=(1,2,...,n)
\LARGE
D=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj} , j = (1,2,...,n)
D=a1jA1j+a2jA2j+...+anjAnj,j=(1,2,...,n)
例题:
例1:
按第一行展开
D=∣132465368∣=1×(−1)1+1∣6568∣+3×(−1)1+2∣4538∣+2×(−1)1+3∣4636∣=
\LARGE
\begin{array}{c}
D=\left|\begin{array}{ccc}
1 & 3 & 2 \\
4 & 6 & 5 \\
3 & 6 & 8
\end{array}\right|=1 \times(-1)^{1+1}\left|\begin{array}{ll}
6 & 5 \\
6 & 8
\end{array}\right|+ \\
3 \times(-1)^{1+2}\left|\begin{array}{ll}
4 & 5 \\
3 & 8
\end{array}\right|+2 \times(-1)^{1+3}\left|\begin{array}{ll}
4 & 6 \\
3 & 6
\end{array}\right|=
\end{array}
D=∣∣143366258∣∣=1×(−1)1+1∣∣6658∣∣+3×(−1)1+2∣∣4358∣∣+2×(−1)1+3∣∣4366∣∣=
例2:

❗️ 定理:(异乘变零定理)n阶行列式 D=∣aij∣\large D = \begin{vmatrix} a_{ij} \end{vmatrix}D=∣∣aij∣∣ 的某一行(列)的所有元素与另一行(列)中对应的元素的代数余子式乘积的和为零,即:
ai1As1+ai2As2+...+ainAsn=0,(i≠s)a1jA1t+a2jA2t+...+anjAnt=0,(j≠t)
\LARGE
a_{i1}A_{s1}+a_{i2}A_{s2}+...+a_{in}A_{sn}=0 , (i \ne s) \\\LARGE
a_{1j}A_{1t}+a_{2j}A_{2t}+...+a_{nj}A_{nt}=0 , (j \ne t)
ai1As1+ai2As2+...+ainAsn=0,(i=s)a1jA1t+a2jA2t+...+anjAnt=0,(j=t)
(不许NTR,纯爱战士狂喜)
证:
∣a11a12...a1na21a22...a2n............ai1ai2...ain............an1an2...ann∣
\LARGE
\begin{vmatrix}
a_{11} & a_{12} & ... & a_{1n} \\
a_{21} & a_{22} & ... & a_{2n} \\
... & ... & ... & ... \\
a_{i1} & a_{i2} & ... & a_{in} \\
... & ... & ... & ... \\
a_{n1} & a_{n2} & ... & a_{nn} \\
\end{vmatrix}
∣∣a11a21...ai1...an1a12a22...ai2...an2..................a1na2n...ain...ann∣∣
假设第一行所有元素乘上第 i\large ii 行的对应元素的代数余子式,那么:
a11Ai1+a12Ai2+...+a1nAin
\LARGE
a_{11}A_{i1}+a_{12}A_{i2}+...+a_{1n}A_{in}
a11Ai1+a12Ai2+...+a1nAin
上面的式子,根据 行列式按行(列)展开 又可以变成:
a11Ai1+a12Ai2+...+a1nAin=∣a11a12...a1na21a22...a2n............a11a12...a1n............an1an2...ann∣
\LARGE
a_{11}A_{i1}+a_{12}A_{i2}+...+a_{1n}A_{in} =
\begin{vmatrix}
a_{11} & a_{12} & ... & a_{1n} \\
a_{21} & a_{22} & ... & a_{2n} \\
... & ... & ... & ... \\
a_{11} & a_{12} & ... & a_{1n} \\
... & ... & ... & ... \\
a_{n1} & a_{n2} & ... & a_{nn} \\
\end{vmatrix}
a11Ai1+a12Ai2+...+a1nAin=∣∣a11a21...a11...an1a12a22...a12...an2..................a1na2n...a1n...ann∣∣
上面的行列式,第一行元素和第 i\large ii 行元素对应相等,所以行列式为0。所以 异乘变零 :
a11Ai1+a12Ai2+...+a1nAin=0
\LARGE
a_{11}A_{i1}+a_{12}A_{i2}+...+a_{1n}A_{in} = 0
a11Ai1+a12Ai2+...+a1nAin=0
拉普拉斯定理
行列式的计算
“杨辉三角”

加边法

范德蒙行列式

注意 :是 ∏1≤j<i≤n\LARGE \prod_{1 \leq j<i \leq n}∏1≤j<i≤n , j\large jj 是小于 i\large ii ,不是小于等于。
例如:n=4
Dn=(x2−x1)(x3−x1)(x4−x1)(x3−x2)(x4−x2)(x4−x3)
\LARGE
D_n =
(x_2-x_1)(x_3-x_1)(x_4-x_1) \\\LARGE
(x_3-x_2)(x_4-x_2) \\\LARGE
(x_4-x_3)
Dn=(x2−x1)(x3−x1)(x4−x1)(x3−x2)(x4−x2)(x4−x3)
一定是“后面”的减法“前面”
反对称矩阵

反对称矩阵=0。
- 主对角线全为0
- 上下位置对应元素(关于主对角线对称),互为相反数
克莱姆(Cramer)法则
设定含有n个未知量n个方程组的线性方程组
{a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2......an1x1+an2x2+...+annxn=bn
\LARGE
\left\{\begin{matrix}
a_{11}x_1 + a_{12}x_2 +...+a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 +...+a_{2n}x_n = b_2 \\
......\\
a_{n1}x_1 + a_{n2}x_2 +...+a_{nn}x_n = b_n \\
\end{matrix}\right.
⎩⎨⎧a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2......an1x1+an2x2+...+annxn=bn
我们称它的系数 aij\large a_{ij}aij 所构成的行列式
∣a11a12...a1na21a22...a2n............an1an2...ann∣
\LARGE
\begin{vmatrix}
a_{11} & a_{12} & ... & a_{1n} \\
a_{21} & a_{22} & ... & a_{2n} \\
... & ... & ... & ... \\
a_{n1} & a_{n2} & ... & a_{nn} \\
\end{vmatrix}
∣∣a11a21...an1a12a22...an2............a1na2n...ann∣∣
为此方程组的 系数行列式 。
将 D\large DD 的第1,2,…,n列分别换成常数项 b1,b2,..,bn\large b_1,b_2,..,b_nb1,b2,..,bn 后,所得到的n个n阶行列式依次记为 D1,D2,...,Dn\large D_1,D_2,...,D_nD1,D2,...,Dn ,即
D1=∣b1a12…a1nb2a22…a2n…………bnan2…ann∣,D2=∣a11b1…a1na21b2…a2n…………an1bn…ann∣Dn=∣a11a12…b1a21a22…b2…………an1an2…bn∣
\LARGE
\begin{array}{c}
D_{1}=\left|\begin{array}{llll}
b_{1} & a_{12} & \ldots & a_{1 n} \\
b_{2} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
b_{n} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|, D_{2}=\left|\begin{array}{llll}
a_{11} & b_{1} & \ldots & a_{1 n} \\
a_{21} & b_{2} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & b_{n} & \ldots & a_{n n}
\end{array}\right| \\
D_{n}=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & b_{1} \\
a_{21} & a_{22} & \ldots & b_{2} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & b_{n}
\end{array}\right|
\end{array}
D1=∣∣b1b2…bna12a22…an2…………a1na2n…ann∣∣,D2=∣∣a11a21…an1b1b2…bn…………a1na2n…ann∣∣Dn=∣∣a11a21…an1a12a22…an2…………b1b2…bn∣∣
❗️ 定理:(克莱姆法则)含有n个方程n个未知量的线性方程组,当它的系数行列式 D≠0\large D \ne 0D=0 时,有唯一解:
xj=DjD,(j=1,2,...,n)
\LARGE
x_j = \frac{D_j}{D} ,(j=1,2,...,n)
xj=DDj,(j=1,2,...,n)
当线性方程组的常数项全为零时:
{a11x1+a12x2+...+a1nxn=0a21x1+a22x2+...+a2nxn=0......an1x1+an2x2+...+annxn=0
\LARGE
\left\{\begin{matrix}
a_{11}x_1 + a_{12}x_2 +...+a_{1n}x_n = 0 \\
a_{21}x_1 + a_{22}x_2 +...+a_{2n}x_n = 0 \\
......\\
a_{n1}x_1 + a_{n2}x_2 +...+a_{nn}x_n = 0 \\
\end{matrix}\right.
⎩⎨⎧a11x1+a12x2+...+a1nxn=0a21x1+a22x2+...+a2nxn=0......an1x1+an2x2+...+annxn=0
称为 齐次线性方程组 。
显然它是肯定有解的 x1=0,x2=0,...,xn=0\large x_1=0,x_2=0,...,x_n=0x1=0,x2=0,...,xn=0 ,此解称为齐次线性方程组的 零解 。除此以外的解,称为齐次线性方程组的 非零解 。
由克莱姆法则可以得出以下定理:
- D≠0(符合克莱姆法则)⟺齐次线性方程组只有零解\large D \ne 0 (符合克莱姆法则) \Longleftrightarrow 齐次线性方程组只有零解D=0(符合克莱姆法则)⟺齐次线性方程组只有零解
- D=0(符合克莱姆法则)⟺齐次线性方程组有非零解\large D = 0 (符合克莱姆法则) \Longleftrightarrow 齐次线性方程组有非零解D=0(符合克莱姆法则)⟺齐次线性方程组有非零解
本文介绍了行列式的概念及其在解决线性方程组中的应用,包括行列式的计算方法、性质、展开方式等内容,并详细讲解了克莱姆法则。
1187

被折叠的 条评论
为什么被折叠?



