旷视科技(Face++)和孙剑博士近期一些研究工作总结

旷视科技首席科学家孙剑博士在计算机视觉领域有诸多贡献,包括物体检测、深度学习和去雾算法。本文总结了他在Face++期间的部分研究成果,如端到端场景文本检测、高效物体分割方法、3D物体重建等,展示了其团队在图像理解和处理领域的创新技术。
摘要由CSDN通过智能技术生成
孙剑博士,前微软亚研院首席研究员,现任旷视科技首席科学家。在计算机视觉方向做出了很多经典的研究工作,例如:物体检测算法(Faster-RCNN 系列),深度残差网络 (Residual Network),经典去雾算法( Single Image Haze Removal using Dark Channel Prior)等。2016年6月底,孙剑博士加入AI领域初创Face++(旷视科技)担任首席科学家,在当时的AI圈引起了不小骚动。下面旷视科技(Face++)和孙剑博士近期一些研究工作总结,以期从中管中窥豹,略见一斑。


1. https://arxiv.org/pdf/1612.00603,“A Point Set Generation Network for 3D Object Reconstruction from a Single Image”
这篇文章研究是如何从单幅照片重构照片中物体三维形状。文中提出利用三维点云来表示物体三维形状的方法。与传统的基于三维网格的方法相比,三维点云的表示更灵活。文中利用C-GAN (Conditional Generative Adversarial Network)的想法,将点云的生成看成一个采用过程,利用深度神经网络建模概率密度函数。得到了优于其他方法的效果。


2. https://arxiv.org/abs/1612.08843, “FastMask: Segment Multi-scale Object Candidates in One Shot”
这篇文章研究的物体分割问题(Segmentation),文中提出一种One-Shot的方式处理图像中物体的多尺度问题。多尺度(物体在图像中的尺度)问题是物体检测,分割任
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值