孙剑博士,前微软亚研院首席研究员,现任旷视科技首席科学家。在计算机视觉方向做出了很多经典的研究工作,例如:物体检测算法(Faster-RCNN 系列),深度残差网络 (Residual Network),经典去雾算法( Single Image Haze Removal using Dark Channel Prior)等。2016年6月底,孙剑博士加入AI领域初创Face++(旷视科技)担任首席科学家,在当时的AI圈引起了不小骚动。下面旷视科技(Face++)和孙剑博士近期一些研究工作总结,以期从中管中窥豹,略见一斑。
1. https://arxiv.org/pdf/1612.00603,“A Point Set Generation Network for 3D Object Reconstruction from a Single Image”
这篇文章研究是如何从单幅照片重构照片中物体三维形状。文中提出利用三维点云来表示物体三维形状的方法。与传统的基于三维网格的方法相比,三维点云的表示更灵活。文中利用C-GAN (Conditional Generative Adversarial Network)的想法,将点云的生成看成一个采用过程,利用深度神经网络建模概率密度函数。得到了优于其他方法的效果。
2. https://arxiv.org/abs/1612.08843, “FastMask: Segment Multi-scale Object Candidates in One Shot”
这篇文章研究的物体分割问题(Segmentation),文中提出一种One-Shot的方式处理图像中物体的多尺度问题。多尺度(物体在图像中的尺度)问题是物体检测,分割任
1. https://arxiv.org/pdf/1612.00603,“A Point Set Generation Network for 3D Object Reconstruction from a Single Image”
这篇文章研究是如何从单幅照片重构照片中物体三维形状。文中提出利用三维点云来表示物体三维形状的方法。与传统的基于三维网格的方法相比,三维点云的表示更灵活。文中利用C-GAN (Conditional Generative Adversarial Network)的想法,将点云的生成看成一个采用过程,利用深度神经网络建模概率密度函数。得到了优于其他方法的效果。
2. https://arxiv.org/abs/1612.08843, “FastMask: Segment Multi-scale Object Candidates in One Shot”
这篇文章研究的物体分割问题(Segmentation),文中提出一种One-Shot的方式处理图像中物体的多尺度问题。多尺度(物体在图像中的尺度)问题是物体检测,分割任