ubuntu利用conda创建虚拟环境,并安装cuda,cudnn,pytorch

cd到安装包所在目录,安装:bash Anaconda3-5.1.0-Linux-x86_64.sh

创建虚拟环境:conda create -n your_env_name python=3.6
 

激活虚拟环境:source activate your_env_name

添加conda国内镜像:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

安装cuda:conda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/
 

安装cudnn:conda install cudnn=7.0.5 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

安装pytorch指定版本:conda install pytorch=0.3.0 torchvision=0.2.0 -c soumith

根据电脑环境,按照pytorch官网对应代码安装

torch官网:https://pytorch.org/get-started/locally/

 

 

注:

安装conda完成后,输入conda list,若出现未找到命令,则需修改环境变量:export PATH=~/anaconda3/bin:$PATH(此法每次开机后都要修改,也可修改配置文件永久生效)

每个不同镜像网站里面包含各种不同的下载包,可根据自己的需求打开查找对应的安装包,

如cudatoolkit 8.0.3 在https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/内,

则安装命令如:conda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/ 即可。

### 如何在 Ubuntu安装和配置 CUDACuDNNPyTorch #### 安装 CUDA 对于 CUDA安装,可以从 NVIDIA 开发者网站获取特定版本的安装执行相应的脚本文件。例如,要安装 CUDA 10.0 版本,在终端输入命令来下载对应的运行文件,通过 `sh` 命令启动安装过程[^1]。 ```bash wget https://developer.download.nvidia.com/compute/cuda/10.0.130/local_installers/cuda_10.0.130_410.48_linux.run sudo sh cuda_10.0.130_410.48_linux.run ``` 完成上述操作之后,还需要设置环境变量以便于后续能够正常使用 CUDA 工具链。这通常涉及到编辑用户的 `.bashrc` 文件以添加路径到 `$PATH` 变量中: ```bash echo 'export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}' >> ~/.bashrc source ~/.bashrc ``` #### 配置 CuDNN 接着是 CuDNN 库的配置工作。一般情况下,可以直接从官方资源页面下载适用于所选 CUDA 版本的 CuDNN tarball 文件。解压该压缩包将其中的内容复制至已有的 CUDA 目录下即可实现集成[^2]。 假设已经获得了 cuDNN v7.6.5 for CUDA 10.0,则可以按照如下方式处理: ```bash tar -xzvf cudnn-10.0-linux-x64-v7.6.5.32.tgz sudo cp cuda/include/* /usr/local/cuda-10.0/include/ sudo cp cuda/lib64/* /usr/local/cuda-10.0/lib64/ ``` 最后同样需要更新动态链接器缓存: ```bash sudo ldconfig ``` #### 设置 PyTorch 为了使 Python 能够识别新安装好的 GPU 加速库,推荐使用 Conda 来管理依赖关系以及创建独立的工作空间。首先应当依据个人需求选取合适的 Miniconda 或 Anaconda 发行版进行部署[^3]。 这里给出基于 Miniconda 创建名为 pytorch_env 的虚拟环境中加入 PyTorch 组件的方法: ```bash # 下载 Miniconda 安装 wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh # 初始化 conda 环境 conda init bash source ~/.bashrc # 创建新的 conda 环境激活它 conda create --name pytorch_env python=3.9 conda activate pytorch_env # 添加 pytorch 渠道安装对应版本 conda install pytorch torchvision torchaudio cudatoolkit=10.0 -c pytorch ``` 至此便完成了整个流程中的所有步骤,现在可以在支持 CUDA 的设备上利用 PyTorch 进行高效的数值计算了。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值