Cursor + MCP = 王炸!彻底颠覆我的 Cursor工作流,效率直接起飞(手把手教程)

一、MCP 是什么?

MCP是一种开放协议,它标准化了应用程序向LLM提供上下文的方式。可以将 MCP 视为 AI 应用程序的 USB-C 端口。正如 USB-C 提供了一种将设备连接到各种外围设备和配件的标准化方式一样,MCP 提供了一种将 AI 模型连接到不同数据源和工具的标准化方式。

MCP 是 Claude (Anthropic) 主导发布的一个开放的、通用的、有共识的协议标准。还多提一句,这个协议的发布最佳机会应该是属于 OpenAI 的。如果 OpenAI 刚发布 GPT 时就推动协议,相信大家都不会拒绝,但是 OpenAI 变成了 CloseAI,只发布了一个封闭的 GPTs。这种需要主导和共识的标准协议一般很难由社区自发形成,通常需要行业巨头来主导。

二、为什么是 MCP?

看到这里你可能有一个问题,在 2023 年 OpenAI 发布 GPT function calling 的时候,不是也可以实现类似的功能吗?我们之前介绍的 AI Agent,不就是用来集成不同的服务吗?为什么又出现了 MCP?

Function Calling、AI Agent、MCP 这三者之间有什么区别?

1、Function Calling

  • Function Calling 指的是 AI 模型根据上下文自动执行函数的机制。
  • Function Calling 充当了 AI 模型与外部系统之间的桥梁,不同的模型有不同的 Function Calling 实现,代码集成的方式也不一样。由不同的 AI 模型平台来定义和实现。

2、Model Context Protocol (MCP)

  • MCP 是一个标准协议,如同电子设备的 Type C 协议(可以充电也可以传输数据),使 AI 模型能够与不同的 API 和数据源无缝交互。
  • MCP 旨在替换碎片化的 Agent 代码集成,从而使 AI 系统更可靠,更有效。通过建立通用标准,服务商可以基于协议来推出它们自己服务的 AI 能力,从而支持开发者更快地构建更强大的 AI 应用。开发者也不需要重复造轮子,通过开源项目可以建立强大的 AI Agent 生态。
  • MCP 可以在不同的应用/服务之间保持上下文,从而增强整体自主执行任务的能力。

3、AI Agent

  • AI Agent 是一个智能系统,它可以自主运行以实现特定目标。传统的 AI 聊天仅提供建议或者需要手动执行任务,AI Agent 则可以分析具体情况,做出决策,并自行采取行动。
  • AI Agent 可以利用 MCP 提供的功能描述来理解更多的上下文,并在各种平台/服务自动执行任务。

可以简单地理解为,MCP 将不同服务和平台的能力列表告诉 AI Agent,AI Agent 根据上下文和模型的推理,判断出是否需要调用某个服务,接着使用 Function Calling 执行函数,这个函数是通过 MCP 来告诉 Function Calling 的,最后通过 MCP 协议提供的具体代码来完成整个过程。

MCP 对于社区生态的好处主要是以下两点:

  1. 标准化:提供了一个标准的协议,让 AI 模型与已有服务进行交互,不需要为每个模型开发不同的集成代码。
  2. 生态系统:建立在一个共同协议上的生态系统,可以让开发者专注于构建更强大的应用,而不是重复造轮子。

三、MCP 工作原理

MCP 的核心是客户端-服务器架构,其中主机应用程序可以连接到多个服务器

img

  • MCP 主机:希望通过 MCP 访问数据的程序,例如 Claude Desktop、IDE 或 AI 工具
  • 客户端:与服务器保持 1:1 连接的协议客户端
  • 服务器:轻量级程序,每个程序都通过标准化模型上下文协议公开特定功能
  • 本地数据源:MCP 服务器可以安全访问的您的计算机文件、数据库和服务
  • 远程服务:MCP 服务器可通过互联网(例如通过 API)连接到的外部系统

MCP Server 就像是一个翻译和安全管理员,它连接 AI 和你的本地环境(如文件系统、数据库或 API)。

以上是对 MCP 的解释,下面我们开始使用 Cursor 配置 MCP 完成一个小案例,来展示它们组合的强大。

四、Cursor 配置 MCP

首先要安装和注册登录 Cursor。具体可以看这篇文章:

下面开始详细的配置,遵循一下步骤:

1、查找 MCP 开源配置

可以直接去官网或者 GitHub 上搜索 MCP。

  • https://github.com/wopal-cn/mcp-hotnews-server

2、Cursor 配置 mcp-hotnews-server

访问 mcp-hotnews-server:https://github.com/wopal-cn/mcp-hotnews-server。

这个 mcp-hotnews-server 主要实现从平台中获取热榜信息:

img

在 github 里可以找到这个配置

{
  "mcpServers": {
    "mcp-server-hotnews": {
      "command": "npx",
      "args": [
        "-y",
        "@wopal/mcp-server-hotnews"
      ]
    }
  }
}

转换成 Cursor 识别的。

npx -y @wopal/mcp-server-hotnews --config "{\"sources\":\"[1,2,3,4,5,6,7,8,9]\"}"

启动 Cursor IDE ,参照图片步骤进入 MCP 配置的位置

img

输入名称,选择 Command 类型,和配置

npx -y @wopal/mcp-server-hotnews --config “{“sources”:”[1,2,3,4,5,6,7,8,9]“}”

这里的 sources 数组中的数字值含义是支持查询平台的编号

img

img

点击save之后稍等,出现绿色的点,表示配置成功了。

img

3、测试 MCP

打卡 Cursor 的 Chat 对话框,选择Agent 模式,输入要求

img

看看输出的结果,搜索的是今日热榜的新闻,搜索结果是 10 条,给出的结果 3 条。

img

在来测试一个知乎热榜:

img

到这里,我们就使用 Cursor 配置了热榜的 mcp-server,如果我们想开发一个类似热榜的程序,那么再也不需要逐个对接,护着写爬虫。可以直接使用开源 mcp-server,借助 AI 来帮助我们完成。

最后为大家总结下 MCP (Model Context Protocol) 将带来的三个最重要的改变:

  1. 开放式工具连接能力
  • 通俗解释:就像手机可以通过蓝牙连接各种设备(耳机、音箱等)一样,MCP 让 AI 助手可以轻松连接并使用各种工具和数据源
  • 比如:AI 可以直接查询公司数据库、分析本地文件、使用开发工具等
  • 重要性:这让 AI 助手变得更加实用,不再局限于简单的对话,而是能够实际帮助我们完成各种具体工作
  1. 标准化和开源优势
  • 通俗解释:就像 USB 接口成为了通用标准一样,MCP 提供了一个开放的标准,让所有人都可以开发和使用
  • 开发者可以自由地为 AI 添加新功能,不需要重新开发整个系统
  • 重要性:这将大大降低开发成本,加速 AI 工具的发展和普及,让更多创新成为可能
  1. 智能代理的进化
  • 通俗解释:AI 助手将变得更加智能和自主,能够根据不同场景自动找到并使用最合适的工具
  • 比如:可以自动为特定公司、部门或个人定制超专业的 AI 助手
  • 重要性:这将带来全新的 AI 应用方式,让 AI 助手更贴近实际需求,真正成为我们工作和生活中的得力助手

总的来说,MCP 的出现就像是给 AI 装上了一个"万能适配器",让它能够更好地理解和使用各种工具,从而真正融入到我们的日常工作中,带来更实用和个性化的 AI 体验。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值