冒泡排序:它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。代码中(flag标志是为了当遍历一遍没有比较就结束冒泡标志,而last则是为了第i趟中从前面n-i个元素进行冒泡)当然还有更好的冒泡排序-鸡尾酒排序,大家可以百度一下哈
package 排序方法;
import java.util.Scanner;
public class SelectBubble {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {
int count = sc.nextInt();
int num[] = new int[count];
for (int i = 0; i < count; i++) {
num[i] = sc.nextInt();
}
sort(num);
for (int i : num) {
System.out.print(i + ",");
}
}
}
public static int[] sort(int[] num) {
int temp;
boolean flag;
int last = num.length-1;
for (int i = 0; i < num.length; i++) {
flag=true;
for (int j = 0; j <last ; j++) {
if (num[j] > num[j+1]) {
// 交换
temp = num[j];
num[j] = num[j + 1];
num[j + 1] = temp;
flag = false;
}
}
if (flag)break;
last--;
}
return num;
}
}
=================================================================================================================================
插入排序:第i趟排序将序列中第i+1个元素Ki+1插入到一个已经按值有序的子序列(K1,K2...Ki)中的合适的位置,使得插入后的序列仍然保持按值有序。(注意标志位从已排好的序列最后往前寻找)
package 排序方法;
import java.util.Scanner;
public class SelectInsert {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
int count = sc.nextInt();
int num[] = new int[count];
for(int i=0;i<count;i++){
num[i]=sc.nextInt();
}
sort(num);
for(int i:num){
System.out.print(i+",");
}
}
}
public static int[] sort(int[] num){
int i,j,temp;
for(i =1;i<num.length;i++){
temp =num[i];
//j>=0&&temp<num[j]若为假则跳出循环语句 连j--都不执行!
for(j=i-1;j>=0&&temp<num[j];j--){
num[j+1]=num[j];
}
//最后j指针停留在比他小的数据
num[j+1]=temp;
}
return num;
}
}
=====================================================================================================================================
选择排序: 第i趟排序从序列的后n-i+1(i=1,2...n-1)个元素中选择一个最小或最大的元素,与该n-i+1个元素的最前面那个元素进行位置交换,直到i=n-1(每一趟的选择排序就是从序列中 未排序的元素中选择一个最小或最大的元素,将该元素与未排序元素的第一个元素交换位置)说白了就是每次从剩余数组中选择一个最小的。
package 排序方法;
import java.util.Scanner;
public class SelectSort {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
int count = sc.nextInt();
int num[] = new int[count];
for(int i=0;i<count;i++){
num[i]=sc.nextInt();
}
sort(num);
for(int i:num){
System.out.print(i+",");
}
}
}
public static int[] sort(int[] num){
for(int i=0;i<num.length;i++){
int min=num[i];
int temp =i;
//找出最小值
for(int j =i+1;j<num.length;j++){
if(min>num[j]){
min=num[j];
temp=j;
}
}
//交换
num[temp]=num[i];
num[i]=min;
}
return num;
}
}
======================================================================================================================================
快速排序:在当前的排序序列(K1,K2......Kn)中任意选取一个元素,把该元素称为基准元素或支点,把小于等于基准元素的所有元素都移动到基准元素的前面,把大于基准元素的所有元素都移动到基准元素的后面,这样使得基准元素的位置正好处于排序后的最终位置,并且把当前参加排序的序列分为前后两个子序列,接下来分别对这两个子序列重复上述操作,直至子序列长度为1。(是冒泡排序的改进,此方法采用分治思想。当然基准元素也可以选择middle元素),当然重复操作我们采用递归方法,这样代码更加简洁。最后注意一下j和i的位置
package 排序方法;
import java.util.Scanner;
public class SelectQuick {
/**
* @param args
*/
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {
int count = sc.nextInt();
int num[] = new int[count];
for (int i = 0; i < count; i++) {
num[i] = sc.nextInt();
}
sort(num,0,count);
for (int i : num) {
System.out.print(i + ",");
}
}
}
public static void sort(int[] num,int left,int right) {
int k;
if(left<right)
{
k=Part(num,left,right);
sort(num,left,k-1);
sort(num,k+1,right);
}
}
public static int Part(int [] num,int left,int right){
int i=left,j=right;
int zhou= num[left];
int temp;
do{
do i++;while(i<j&&num[i]<zhou);//找到>=zhou的数
do j--;while(num[j]>zhou);//找到<=zhou的数
//交换 i,j
if(i<j){
temp =num[i];
num[i]=num[j];
num[j]=temp;
}
}while(i<j);
//将轴与j兑换
num[left]=num[j];
num[j]=zhou;
return j;//返回中轴位置
}
}
===================================================================================================================
归并排序:是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。我们用递归将数组逐步二分成单个数据的数组,然后不断合并数组,这里牵涉到两个有序数组合合并成有序数组问题,可以分别用两个指针指向两个数组,比较a[i]和b[j] ,谁小谁指针++,并将小的放入临时数组。如此往下。
package 排序方法;
import java.util.Scanner;
public class SelectMerge {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
int count = sc.nextInt();
int num[] = new int[count];
for(int i=0;i<count;i++){
num[i]=sc.nextInt();
}
sort(num,0,count-1);
for(int i:num){
System.out.print(i+",");
}
}
}
public static void sort(int[] num,int left,int right){
if(left<right){
int mid = (left+right)/2;
sort(num,left,mid);
sort(num,mid+1,right);
//将left和right合并
Merge(num,left,mid,right);
}
}
//将两个排好序的子串 合并成一个整串
public static void Merge(int[] num,int left,int mid,int right){
int i=left,j=mid+1;
int m=0;
int temp[] =new int[right-left+1];
//等长度部分处理
while((i<=mid)&&(j<=right)){
if(num[i]<num[j]){
temp[m]=num[i];
i++;
}
else{
temp[m]=num[j];
j++;
}
m++;
}
//余长处理
while(i<=mid){
temp[m++]=num[i++];
}
while(j<=right){
temp[m++]=num[j++];
}
//将temp排序好的复制到num中区
int n=0;
for(int x=left;x<=right;x++){
num[x]=temp[n++];
}
}
}
============================================================================================================================
堆排序:堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。(堆排序分为两个操作:(1)初始序列建堆(大根堆或者小根堆)操作(2)剔除到最小或者最大元素然后堆调整)
建堆过程_小顶堆([49,38,65,97,76,13,27,49]也就是 i节点和2i+1和2i+2 比较,进行不断调整。如果有次不用调整了,则建堆完成,一般是从n/2个节点往前面调整,因为这个节点的孩子就是整个数组的最后一个)
调整堆的过程_小顶堆(根元素(最小)与最后一个元素交换,输出最后一个元素,然后对前面n-1个元素进行堆调整。重复(n-1)次操作)
package 排序方法;
import java.util.Scanner;
public class SelectDui {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {
int count = sc.nextInt();
int num[] = new int[count];
for (int i = 0; i < count; i++) {
num[i] = sc.nextInt();
}
JianDui(num, 0, count - 1);
}
}
// 建最小堆语句 {16 4 10 14 7 9 3 2 8 1}
public static void JianDui(int num[], int left, int right) {
int l = right + 1;
int i = left;
int temp;
boolean flag = true;
//这个循环最坏时间为logn
while (i <= (left + right) / 2) {
// 将最小的数字放到根节点
if ((2 * i + 1 < l) && (num[i] > num[2 * i + 1])) {
temp = num[i];
num[i] = num[2 * i + 1];
num[2 * i + 1] = temp;
flag = false;
}
if ((2 * i + 2 < l) && (num[i] > num[2 * i + 2])) {
temp = num[i];
num[i] = num[2 * i + 2];
num[2 * i + 2] = temp;
flag = false;
}
i++;
}
// 没有排好继续排 //这个递归至多n次 故建堆操作最坏时间复杂度为(nlogn)
if (!flag)JianDui(num, left, right);
//正规方法 不需要多余辅助空间
// 正规方法:输出堆顶元素,然后将堆顶元素与最后一个元素兑换,减掉最后一个元素,对前一段进行从上等到下调整
// 没输出一个元素又要调整堆,故复杂度仍然nlogn;
else{
System.out.print(num[left]+",");
//交换到末尾
if(right>=1){
int temp1= num[left];
num[left]=num[right];
num[right]=temp1;
JianDui(num, 0,--right);
}
}
}
}
=====================================================================================================================
好啦,还有一些排序方法时间问题就不罗列了,最后我们来看下算法的复杂度比较。