1、数据集准备
假设已经有了标注好的一分部数据,
(1)运行voc2yolo3.py生成txt文件,保存在ImageSets/Main目录下
(2)修改voc_annotation.py中的classes
classes = ["mask", "unmask"]
运行后,生成三个txt文件,每一行对应的是一张图片的位置,标注的真实框位置以及label, 0代表戴口罩,1代表未戴口罩:
我的目录结构:
2、修改先验框中的值
根据训练集中标注框的大小,利用kmeans.py生成合适的先验框保存在model_data下的yolo_anchors.txt和tiny_yolo_anchors.txt中,而不使用官方给定的。这里有两种架构,yolov3_tiny架构和yolov3架构,k=9,生成yolo_anchors;k=6,生成tiny_yolo_anchors。
然后,将model_data下的voc_classes.txt中的类别修改为需要的类别:mask与un