基于yolov3的口罩检测

本文详细介绍了如何基于YOLOv3进行口罩检测,包括数据集准备,自定义先验框,训练过程,以及单张图片、本地视频和摄像头实时测试的方法。通过调整K值生成适合的先验框,并转换预训练权重为Keras模型进行训练,最后提供测试代码和资源链接。
摘要由CSDN通过智能技术生成

1、数据集准备
假设已经有了标注好的一分部数据,
(1)运行voc2yolo3.py生成txt文件,保存在ImageSets/Main目录下
(2)修改voc_annotation.py中的classes

classes = ["mask", "unmask"]

运行后,生成三个txt文件,每一行对应的是一张图片的位置,标注的真实框位置以及label, 0代表戴口罩,1代表未戴口罩:
在这里插入图片描述
我的目录结构:
在这里插入图片描述

2、修改先验框中的值
根据训练集中标注框的大小,利用kmeans.py生成合适的先验框保存在model_data下的yolo_anchors.txt和tiny_yolo_anchors.txt中,而不使用官方给定的。这里有两种架构,yolov3_tiny架构和yolov3架构,k=9,生成yolo_anchors;k=6,生成tiny_yolo_anchors。
在这里插入图片描述
然后,将model_data下的voc_classes.txt中的类别修改为需要的类别:mask与un

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值