熵,联合熵,条件熵,相对熵,互信息的定义

预备基础概念

  • X : 随机变量
  • x : 随机变量X的具体取值
  • P(X) : 随机变量X的概率分布
  • P(X,Y) : 随机变量X,Y的联合概率分布
  • P(Y|X) : 已知随机变量X的情况下,随机变量Y的条件概率分布
  • P(X=x) => p(x) : 随机变量取某个值的概率
  • P(X=x,Y=y) => p(x,y) : 联合概率
  • P(X=x|Y=y) =>p(y|x) : 条件概率 、
  • 且有 p(x,y) = p(x)*p(y|x)
信息量

事件的不确定性
事件发生的概率越大,信息量越小,事件发生的概率越小,信息量越小;
正好符合-logP 函数

简单来讲,就是指所有信息量的期望
如果一个随机变量X的可能取值为X = { x 1 , x 2 , . . . , x k x_{1},x_{2},... ,x_{k} x1,x2,...,xk}
其概率分布为P(X= x i x_{i} xi) = p i p_{i} pi (i = 1,2,…,n)
则随机变量的熵定义为
H ( X ) = − ∑ x p ( x ) l o g p ( x ) H(X) = -\sum_{x}p(x)logp(x) H(X)=xp(x)logp(x)
等价于
H ( X ) = ∑ x p ( x ) l o g 1 p ( x ) H(X) = \sum_{x}p(x)log\frac{1}{p(x)} H(X)=xp(x)logp(x)1

联合熵

两个随机变量X,Y的联合分布
H ( X , Y ) = ∑ x , y p ( x , y ) l o g 1 p ( x , y ) H(X,Y) = \sum_{x,y}p(x,y)log\frac{1}{p(x,y)} H(X,Y)=x,yp(x,y)logp(x,y)1

条件熵

在随机变量X发生的前提下,随机变量Y发生所带来的熵定义为Y的条件熵
主要用来衡量在已知随机变量X的条件下随机变量Y的不确定性
H ( Y ∣ X ) = H ( X , Y ) = H ( X ) H(Y|X) = H(X,Y) = H(X) H(YX)=H(X,Y)=H(X) 表示(X,Y)发生所包含的熵减去X单独发生包含的熵
推导
H ( Y ∣ X ) = H ( X , Y ) − H ( X ) H(Y|X) = H(X,Y) - H(X) H(YX)=H(X,Y)H(X)
= − ∑ x , y p ( x , y ) l o g p ( x , y ) + ∑ x l o g p ( x ) = -\sum_{x,y}p(x,y)logp(x,y)+\sum_{x}logp(x) =x,yp(x,y)logp(x,y)+xlogp(x)
根据边缘分布概率等于联合分布概率的和得出
= − ∑ x , y p ( x , y ) l o g p ( x , y ) + ∑ x ( ∑ y p ( x , y ) ) l o g p ( x ) = -\sum_{x,y}p(x,y)logp(x,y) + \sum_{x}(\sum_{y}p(x,y))logp(x) =x,yp(x,y)logp(x,y)+x(yp(x,y))logp(x)
= − ∑ x , y p ( x , y ) l o g p ( x , y ) + ∑ x , y p ( x , y ) l o g p ( x ) =-\sum_{x,y}p(x,y)logp(x,y)+\sum_{x,y}p(x,y)logp(x) =x,yp(x,y)logp(x,y)+x,yp(x,y)logp(x)
= − ∑ x , y ( l o g p ( x , y ) − l o g ( x ) ) =-\sum_{x,y}(logp(x,y)-log(x)) =x,y(logp(x,y)log(x)) -----------------> p ( x , y ) = p ( x ) − p ( y ∣ x ) p(x,y) = p(x)-p(y|x) p(x,y)=p(x)p(yx)
= − ∑ x , y l o g p ( x , y ) p ( x ) =-\sum_{x,y}log\frac{p(x,y)}{p(x)} =x,ylogp(x)p(x,y)
= − ∑ x , y l o g p ( y ∣ x ) =-\sum_{x,y}logp(y|x) =x,ylogp(yx)

相对熵(互熵,交叉熵,鉴别信息,Kullback熵,Kullback-Leible散度)

设p(x),q(x)是X中取值的两个概率分布,则p对q的相对熵为
D ( p ∣ ∣ q ) = ∑ x p ( x ) l o g p ( x ) q ( x ) = E p ( x ) l o g p ( x ) q ( x ) D(p||q) = \sum_{x}p(x)log\frac{p(x)}{q(x)}=E_{p(x)}log\frac{p(x)}{q(x)} D(pq)=xp(x)logq(x)p(x)=Ep(x)logq(x)p(x)
在一定程度上,相对熵可以度量两个随机变量的"距离"且有D(p||q) ≠ \neq ̸= D(q||p)
D ( p ∣ ∣ q ) ≥ 0 D(p||q)\geq0 D(pq)0

互信息(信息增益)

两个随机变量X,Y的互信息定义为X,Y的联合概率分布和各自独立分布乘积的熵
I ( X , Y ) = ∑ x , y l o g p ( x , y ) p ( x ) p ( y ) I(X,Y) = \sum_{x,y}log\frac{p(x,y)}{p(x)p(y)} I(X,Y)=x,ylogp(x)p(y)p(x,y)
I ( X , Y ) = D ( P ( X , Y ) ∣ ∣ P ( X ) P ( Y ) ) I(X,Y) = D(P(X,Y)||P(X)P(Y)) I(X,Y)=D(P(X,Y)P(X)P(Y))
H ( Y ) − I ( X , Y ) H(Y)-I(X,Y) H(Y)I(X,Y)
= − ∑ y p ( y ) l o g p ( y ) − ∑ x , y p ( x , y ) l o g p ( x , y ) p ( x ) p ( y ) =-\sum_{y}p(y)logp(y)-\sum_{x,y}p(x,y)log\frac{p(x,y)}{p(x)p(y)} =yp(y)logp(y)x,yp(x,y)logp(x)p(y)p(x,y)
= − ∑ y ( ∑ x p ( x , y ) ) l o g p ( y ) − ∑ x , y p ( x , y ) l o g p ( x , y ) p ( x ) p ( y ) =-\sum_{y}(\sum_{x}p(x,y))logp(y)-\sum_{x,y}p(x,y)log\frac{p(x,y)}{p(x)p(y)} =y(xp(x,y))logp(y)x,yp(x,y)logp(x)p(y)p(x,y)
= − ∑ x , y p ( x , y ) l o g p ( x , y ) − ∑ x , y p ( x , y ) l o g p ( x , y ) p ( x ) p ( y ) =-\sum_{x,y}p(x,y)logp(x,y)-\sum_{x,y}p(x,y)log\frac{p(x,y)}{p(x)p(y)} =x,yp(x,y)logp(x,y)x,yp(x,y)logp(x)p(y)p(x,y)
= − ∑ x , y p ( x , y ) ( l o g ( x , y ) + l o g p ( x , y ) p ( y ) ) =-\sum_{x,y}p(x,y)(log(x,y)+log\frac{p(x,y)}{p(y)}) =x,yp(x,y)(log(x,y)+logp(y)p(x,y))
= − ∑ x , y p ( x , y ) l o g p ( x , y ) p ( x ) =-\sum_{x,y}p(x,y)log\frac{p(x,y)}{p(x)} =x,yp(x,y)logp(x)p(x,y)
= − ∑ x , y p ( x , y ) l o g ( p ( y ∣ x ) ) =-\sum_{x,y}p(x,y)log(p(y|x)) =x,yp(x,y)log(p(yx))
= H ( Y ∣ X ) =H(Y|X) =H(YX)
综上推导得出
H(Y)-I(X,Y) = H(Y|X)
通过条件熵定义
H(Y|X) = H(X,Y)-H(X)
根据互信息定义展开得到
H(Y|X)=H(Y)-I(X,Y)
最终得到
I(X,Y) = H(X)+H(Y)-H(X,Y)

  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值