CINTA四:群、子群

本文详细探讨了群论中的关键概念,包括群的性质、子群的存在性和逆元的计算。通过证明命题6.6至6.8,阐述了群的封闭性、逆元的存在性和子群的充分必要条件。特别是,对于偶数阶群,证明了至少存在一个非单位元的二阶元,并展示了如何确定群中元素的逆元。
摘要由CSDN通过智能技术生成

1、证明命题6.6

因为G为群,且a,b,c\inG,所以存在a^{-1}\in G,使得a\cdot a^{-1}=e=a^{-1}\cdot a

又因为ba=ca,所以baa^{-1}=caa^{-1},即b=a

又因为ab=ac,同理b=c

2、证明命题6.7

因为G是群,则∀a,b \inG,有:

g^{m}g^{n}=g\cdot g\cdot ...\cdot g(m-1次群运算)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值