目录
1.全连接卷积神经网络(FCN)
- Fully Convolutional Network,FCN语义分割是对图像中的每个像素进行分类,输出的类别预测与输入图像在像素级别上具有一一对应关系:通道维的输出即为该位置对应像素的类别预测
- FCN 采用卷积神经网络实现了从图像像素到像素类别的变换,区别于图像分类和目标检测中的卷积神经网络,全连接卷积神经网络通过引入转置卷积将中间层特征图的高和宽变换回输入图像的尺寸
工作原理
- FCN是用深度神经网络来做语义分割的奠基性工作
- 它用转置卷积层来替换CNN最后的全连接层,从而可以实现每个像素的预测
1、CNN 可以认为是在 ImageNet 上面预训练好的模型
全连接卷积神经网络先使用卷积神经网络抽取图像特征
CNN 模型的最后两层要么就是全连接层,这样可以做到 label 的语义信息,全连接层下面通常是一个全局平均池化层:全连接层将 224 * 224 的图片变成 7 * 7 的高宽,全局平均池化层再将 7 * 7 变成