目录
1.机器翻译与数据集
- 语言模型是自然语言处理的关键,而机器翻译是语言模型最成功的基准测试
- 机器翻译(machine translation)指的是将序列从一种语言自动翻译成另一种语言,它是是将输入序列转换成输出序列的序列转换模型(sequence transduction)的核心问题
- 几十年来,在使用神经网络进行端到端学习的兴起之前,统计学方法在这一领域一直占据着主导地位。因为统计机器翻译(statisticalmachine translation)涉及了翻译模型和语言模型等组成部分的统计分析, 因此基于神经网络的方法通常被称为神经机器翻译(neuralmachine translation), 用于将两种翻译模型区分开来
- 与语料库是单一语言的语言模型问题不同,机器翻译的数据集是由源语言和目标语言的文本序列对组成的
如何将预处理后的数据加载到小批量中用于训练
1、下载数据集
-
下载由Tatoeba项目的双语句子对组成的“英-法”数据集
-
数据集中的每一行都是制表符分隔的文本序列对
-
序列对由英文文本序列和