OpenCV学习笔记(7)--Canny Edge Detection Canny边缘检测

本文详细介绍了Canny边缘检测算法的步骤,包括噪音去除、梯度计算、非最大值抑制和滞后阈值法。通过OpenCV库演示了如何在Python中应用Canny算法,强调了参数设置对结果的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    Canny 边缘检测是很流行的边缘检测算法,是在1986年由John F.Canny提出的。它是一个多级(multi-stage)算法。下面详细介绍每一级。

    1.减少噪音

        因为边缘检测对噪音非常敏感,所以实现边缘检测的第一步,是使用高斯滤波器对图像中的噪音进行移除。

    2.寻找图像中的强度梯度(Intensity Gradient)

         用Sobel kernel在水平和垂直方向过滤来平滑图像,并取得图像在水平和垂直方向的一阶导数(first derivate)

利用以上取得的两个图像,可以用以下公式找到每个像素的边缘梯度和方向:

                              

         梯度方向总是垂直于边。它被四舍五入为四个角中的一个,表示垂直、水平和两个对角线方向。

    3.Non-maximum Suppression非最大值抑制

        上述获取梯度的大小和方向之后,一张移除了不想要的像素(这些像素是指不组成边的)全图,为了得到这张全图(为了移除这些像素),对每一个像素进行查验,判断它是否是梯度方向上的像零点的相邻最大值(local maximum)。

        

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值