logistic回归是当输出𝑦为0或1时在监督学习问题中使用的学习算法。
例如:给定一张图片,这个算法得出的结果是这张图片是猫的概率,
logistic回归中的参数:
Ø 输入向量x:x是n维向量
Ø 标签y:0或1
Ø 参数w:n维向量,可以理解为x各分量的权值
Ø 参数b
Ø 输出:
Ø
Sigmoid函数
对logistic的解释:由于线性函数的范围不符合我们对概率∈[0,1]这个要求,所以我们用Sigmoid函数加以限制,使函数值很好地落在[0,1]。
学习实际上就是学习的w和b的值
我好难 我不会用LaTeX公式 只能用图片代替了