神经网络与深度学习——神经网络基础——logistic回归

logistic回归是当输出𝑦为0或1时在监督学习问题中使用的学习算法。

例如:给定一张图片,这个算法得出的结果是这张图片是猫的概率

在这里插入图片描述

logistic回归中的参数:

Ø 输入向量x:x是n维向量

Ø 标签y:0或1

Ø 参数w:n维向量,可以理解为x各分量的权值

Ø 参数b

Ø 输出:

在这里插入图片描述

Ø

Sigmoid函数
在这里插入图片描述
在这里插入图片描述

对logistic的解释:由于线性函数的范围不符合我们对概率∈[0,1]这个要求,所以我们用Sigmoid函数加以限制,使函数值很好地落在[0,1]。

学习实际上就是学习的w和b的值

我好难 我不会用LaTeX公式 只能用图片代替了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值