深度学习-TF函数-layers.concatenate用法

本文详细介绍了如何在TensorFlow环境下使用concatenate函数进行张量拼接操作,包括不同axis参数设置下对三维矩阵的影响,并通过具体代码示例展示了拼接效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境: tensorfow 2.*

def concatenate(inputs, axis=-1, **kwargs):

axis=n表示从第n个维度进行拼接,对于一个三维矩阵,axis的取值可以为[-3, -2, -1, 0, 1, 2]。

代码

import numpy as np
import tensorflow as tf

t1 = tf.Variable(np.array([[[1, 2], [2, 3]], [[4, 4], [5, 3]]]))
t2 = tf.Variable(np.array([[[7, 4], [8, 4]], [[2, 10], [15, 11]]]))

d0 = tf.keras.layers.concatenate([t1, t2], axis=0)
d1 = tf.keras.layers.concatenate([t1, t2], axis=1)
d2 = tf.keras.layers.concatenate([t1, t2], axis=2)
d3 = tf.keras.layers.concatenate([t1, t2], axis=-1)

print(d0)
print(d1)
print(d2)
print(d3)

结果:

tf.Tensor(
[[[ 1  2]
  [ 2  3]]

 [[ 4  4]
  [ 5  3]]

 [[ 7  4]
  [ 8  4]]

 [[ 2 10]
  [15 11]]], shape=(4, 2, 2), dtype=int32)
tf.Tensor(
[[[ 1  2]
  [ 2  3]
  [ 7  4]
  [ 8  4]]

 [[ 4  4]
  [ 5  3]
  [ 2 10]
  [15 11]]], shape=(2, 4, 2), dtype=int32)
tf.Tensor(
[[[ 1  2  7  4]
  [ 2  3  8  4]]

 [[ 4  4  2 10]
  [ 5  3 15 11]]], shape=(2, 2, 4), dtype=int32)
tf.Tensor(
[[[ 1  2  7  4]
  [ 2  3  8  4]]

 [[ 4  4  2 10]
  [ 5  3 15 11]]], shape=(2, 2, 4), dtype=int32)

Process finished with exit code 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茫茫人海一粒沙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值