Law of total expectation證明

Law of total expectation證明

Law of total expectation的公式為:
E ⁡ ( X ) = E ⁡ ( E ⁡ ( X ∣ Y ) ) \operatorname{E} (X) = \operatorname{E} \left( \operatorname{E} (X \mid Y) \right) E(X)=E(E(XY))

參考Law of total expectation - Proof in the finite and countable cases,證明如下:

E ⁡ ( E ⁡ ( X ∣ Y ) ) = E ⁡ [ ∑ x x ⋅ P ⁡ ( X = x ∣ Y ) ] 在外層給定一個y(y固定)的情況下,展開內層期望值 = ∑ y [ ∑ x x ⋅ P ⁡ ( X = x ∣ Y = y ) ] ⋅ P ⁡ ( Y = y ) 展開外層期望值,並注意到內層期望值是y的函數 = ∑ y ∑ x x ⋅ P ⁡ ( X = x , Y = y ) . 聯合分布 \begin{aligned} \operatorname{E} \left( \operatorname{E} (X \mid Y) \right) &= \operatorname{E} \Bigg[ \sum_x x \cdot \operatorname{P}(X=x \mid Y) \Bigg] && \text{在外層給定一個y(y固定)的情況下,展開內層期望值} \\[6pt] &=\sum_y \Bigg[ \sum_x x \cdot \operatorname{P}(X=x \mid Y=y) \Bigg] \cdot \operatorname{P}(Y=y) && \text{展開外層期望值,並注意到內層期望值是y的函數} \\[6pt] &=\sum_y \sum_x x \cdot \operatorname{P}(X=x, Y=y). && \text{聯合分布} \end{aligned} E(E(XY))=E[xxP(X=xY)]=y[xxP(X=xY=y)]P(Y=y)=yxxP(X=x,Y=y).在外層給定一個y(y固定)的情況下,展開內層期望值展開外層期望值,並注意到內層期望值是y的函數聯合分布

如果上面的級數是有限的,我們便可以交換求和符號的順序:

E ⁡ ( E ⁡ ( X ∣ Y ) ) = ∑ x ∑ y x ⋅ P ⁡ ( X = x , Y = y ) = ∑ x x ∑ y P ⁡ ( X = x , Y = y ) x 對內層的 ∑ 來說是常數 = ∑ x x ⋅ P ⁡ ( X = x ) = E ⁡ ( X ) . \begin{aligned} \operatorname{E} \left( \operatorname{E} (X \mid Y) \right) &= \sum_x \sum_y x \cdot \operatorname{P}(X=x, Y=y)\\&=\sum_x x\sum_y \operatorname{P}(X=x, Y=y) && x\text{對內層的}\sum\text{來說是常數}\\[6pt] &=\sum_x x \cdot \operatorname{P}(X=x)\\[6pt] &=\operatorname{E}(X). \end{aligned} E(E(XY))=xyxP(X=x,Y=y)=xxyP(X=x,Y=y)=xxP(X=x)=E(X).x對內層的來說是常數

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值