Principal Component Analysis (PCA)主成分分析

主成分分析(PCA)是一种常见的数据分析技术,用于降低数据维度并保留主要信息。PCA通过线性变换解释数据的方差和协方差结构,常用于机器学习、信号处理和图像压缩。在PCA中,首先计算数据的协方差矩阵,找出特征向量并按特征值大小排序,选择最重要的几个特征向量作为新的坐标轴,从而实现数据降维。
摘要由CSDN通过智能技术生成

什么是主成分分析?

功能:降维以及特征构建

  1. PCA被用于减少数据维度,但不损失太多信息
  2. PCA被用于机器学习、信号处理和图像压缩

PCA的目的

通过对变量的线性结合,来解释或者总结一组数据量较大的变量的方差、协方差结构。

PCA的背景

假设有两个属性A1、A2,n个训练样本。x表示A1的值,y表示A2 的值
A1的方差为:

var(A1)=ni=1(xix¯)2n1

A1和A2 的协方差为:
cov(A1,A2)=ni=1(xix¯)(yiy¯)n1</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值