什么是主成分分析 PCA的目的 PCA的背景 二维数值示例 数据重构 主成分分析步骤 什么是主成分分析? 功能:降维以及特征构建 PCA被用于减少数据维度,但不损失太多信息 PCA被用于机器学习、信号处理和图像压缩 PCA的目的 通过对变量的线性结合,来解释或者总结一组数据量较大的变量的方差、协方差结构。 PCA的背景 假设有两个属性A1、A2,n个训练样本。x表示A1的值,y表示A2 的值 A1的方差为: var(A1)=∑ni=1(xi−x¯)2n−1 A1和A2 的协方差为: cov(A1,A2)=∑ni=1(xi−x¯)(yi−y¯)n−1</