Principal Component Analysis (PCA)主成分分析
最新推荐文章于 2024-10-16 00:00:00 发布
主成分分析(PCA)是一种常见的数据分析技术,用于降低数据维度并保留主要信息。PCA通过线性变换解释数据的方差和协方差结构,常用于机器学习、信号处理和图像压缩。在PCA中,首先计算数据的协方差矩阵,找出特征向量并按特征值大小排序,选择最重要的几个特征向量作为新的坐标轴,从而实现数据降维。
摘要由CSDN通过智能技术生成