Caffe中文件参数设置(五):Blob,Layer,Net以及对应配置文件的编写

标签: caffe 参数设置 BLOB LAYER NET
91人阅读 评论(0) 收藏 举报
分类:

深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯的。

1、blob

Blobs封装了运行时的数据信息,提供了CPU和GPU的同步。从数学上来说, Blob就是一个N维数组。它是caffe中的数据操作基本单位,就像matlab中以矩阵为基本操作对象一样。只是矩阵是二维的,而Blob是N维的。N可以是2,3,4等等。对于图片数据来说,Blob可以表示为(N*C*H*W)这样一个4D数组。其中N表示图片的数量,C表示图片的通道数,H和W分别表示图片的高度和宽度。当然,除了图片数据,Blob也可以用于非图片数据。比如传统的多层感知机,就是比较简单的全连接网络,用2D的Blob,调用innerProduct层来计算就可以了。

在模型中设定的参数,也是用Blob来表示和运算。它的维度会根据参数的类型不同而不同。比如:在一个卷积层中,输入一张3通道图片,有96个卷积核,每个核大小为11*11,因此这个Blob是96*3*11*11. 而在一个全连接层中,假设输入1024通道图片,输出1000个数据,则Blob为1000*1024

2、layer

层是网络模型的组成要素和计算的基本单位。层的类型比较多,如Data,Convolution,Pooling,ReLU,Softmax-loss,Accuracy等,一个层的定义大至如下图:

从bottom进行数据的输入 ,计算后,通过top进行输出。图中的黄色多边形表示输入输出的数据,蓝色矩形表示层。

每一种类型的层都定义了三种关键的计算:setup,forward and backword

setup: 层的建立和初始化,以及在整个模型中的连接初始化。

forward: 从bottom得到输入数据,进行计算,并将计算结果送到top,进行输出。

backward: 从层的输出端top得到数据的梯度,计算当前层的梯度,并将计算结果送到bottom,向前传递。

3、Net

就像搭积木一样,一个net由多个layer组合而成。

现给出 一个简单的2层神经网络的模型定义( 加上loss 层就变成三层了),先给出这个网络的拓扑。
第一层:name为mnist, type为Data,没有输入(bottom),只有两个输出(top),一个为data,一个为label
第二层:name为ip,type为InnerProduct, 输入数据data, 输出数据ip
第三层:name为loss, type为SoftmaxWithLoss,有两个输入,一个为ip,一个为label,有一个输出loss,没有画出来。
对应的配置文件prototxt就可以这样写:
    name: "LogReg"  
    layer {  
      name: "mnist"  
      type: "Data"  
      top: "data"  
      top: "label"  
      data_param {  
        source: "input_leveldb"  
        batch_size: 64  
      }  
    }  
    layer {  
      name: "ip"  
      type: "InnerProduct"  
      bottom: "data"  
      top: "ip"  
      inner_product_param {  
        num_output: 2  
      }  
    }  
    layer {  
      name: "loss"  
      type: "SoftmaxWithLoss"  
      bottom: "ip"  
      bottom: "label"  
      top: "loss"  
    }  
第一行将这个模型取名为LogReg, 然后是三个layer的定义,参数都比较简单,只列出必须的参数。

以上转自:http://blog.csdn.net/langb2014/article/details/50457760

查看评论

(Caffe)基本类Blob,Layer,Net(一)

本文地址:http://blog.csdn.net/mounty_fsc/article/details/51085654 Caffe中,Blob,Layer,Net,Solver是最为核心...
  • qq_26569761
  • qq_26569761
  • 2016-06-01 19:18:45
  • 446

Caffe中文件参数设置(五):Blob,Layer,Net以及对应配置文件的编写

深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blob...
  • kele_imon
  • kele_imon
  • 2018-01-18 11:23:19
  • 91

caffe 中 BLOB的实现

original url: http://blog.csdn.net/xizero00/article/details/50886829 一、前言 等着caffe没有...
  • junmuzi
  • junmuzi
  • 2016-07-12 16:33:17
  • 1880

Caffe框架的理解(一):从blob到layer到net

本文转载自caffe学习心得(一)Blobs,Layers,Nets: caffe模型解剖 ——beyond. Caffe用自己的建模方法将网络一层一层定义出来。网络由输入数据到损失层把整个模型自底向...
  • u013832707
  • u013832707
  • 2017-02-21 19:45:04
  • 1301

Caffe中Blob细解

Blob数据结构介绍
  • wuqingshan2010
  • wuqingshan2010
  • 2017-05-02 15:41:44
  • 732

Caffe学习系列(6):Blob,Layer and Net以及对应配置文件的编写

http://www.cnblogs.com/denny402/p/5073427.html 深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组...
  • haluoluo211
  • haluoluo211
  • 2017-01-17 11:14:41
  • 164

Caffe中Layer和Net细解

Caffe中Layer和Net细解
  • wuqingshan2010
  • wuqingshan2010
  • 2017-05-02 16:31:30
  • 485

Caffe研究之blob

Caffe研究之blob Caffe:Blob、Layer、Net。Blob是一个四维的数组,用于存储数据,包括输入数据、输出数据、权值等; Blob是Caffe中处理和传递实际数据的数据封装包,...
  • forest_world
  • forest_world
  • 2016-10-28 08:53:06
  • 6676

caffe的用法总结

  • 2015年09月25日 10:40
  • 1.26MB
  • 下载

caffe blob类用法详解

此部分内容参考了三人的博客,写的东西有相同之处和不同之处,互相补充吧.       1. 转载链接:http://blog.csdn.net/chenriwei2/article/details/46...
  • dengheCSDN
  • dengheCSDN
  • 2017-09-18 14:12:57
  • 2525
    个人资料
    持之以恒
    等级:
    访问量: 3310
    积分: 339
    排名: 23万+
    文章存档
    最新评论