一、前言
好久不更新了,不是因为没有东西写,是一直没空好好整理下这学期的东西,期末了,有时间了,认真整理一下。
下面是我学习了opencv基础入门课程时做的一个综合一点的作业,效果如下。我还将整理许多份opencv内容,供大家参考,会有自己的风格。
二、系统功能
在视频中用鼠标随意圈选一个目标人物,就会被锁定直至消失在画面中。(这是距离很近的两帧图,选中任务从灯左边过到右边跟踪依然有效)
本系统基于linux操作系统下,通过加载开源函数库OPENCV来实现目标跟踪功能。
1--色彩投影图(反向投影)
(1)RGB颜色空间对光照亮度变化较为敏感,为了减少此变化对跟踪效果的影响,首先将图像从RGB空间转换到HSV空间。
(2)然后对其中的H分量作直方图,在直方图中代表了不同H分量值出现的概率或者像素个数,就是说可以查找出H分量大小为h的概率或者像素个数,即得到了颜色概率查找表。
(3)将图像中每个像素的值用其颜色出现的概率对替换,就得到了颜色概率分布图。这个过程就叫反向投影,颜色概率分布图是一个灰度图像。
3--camshift
将meanshift算法扩展到连续图像序列,就是camshift算法。它将视频的所有帧做meanshift运算,并将上一帧的结果,即搜索窗的大小和中心,作为下一帧meanshift算法搜索窗的初始值。如此迭代下去,就可以实现对目标的跟踪。
(本课题主要运用camshift方法来实现目标跟踪)
遮挡是视频运动目标检测、跟踪和识别时经常遇到的问题,也是比较难解决的问题之一。本系统可以在复杂的场合实现目标跟踪。目标人物在通过遮挡物后,仍然可以被准确跟踪

缺点是高度依赖颜色特征,当颜色不具有明显特征或收到干扰时,将不能有效跟踪

五、总结
预期程序最终可以实现多台电脑联网跟踪功能,只要锁定目标人物,只要目标人物出现在监控视频中,系统就可以再次对目标人物进行锁定。
在不到一周的时间里,从确定课题,到查阅资料,再到初步完成课题
