torch.optim.lr_scheduler.LambdaLR( )函数的用法

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1) 是 PyTorch 中的学习率调度器类之一,用于根据自定义的函数 lr_lambda 调整优化器的学习率

用法:

torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda,last_epoch=-1)

参数说明:

  • optimizer:优化器对象,例如 torch.optim.SGDtorch.optim.Adam
  • lr_lambda:一个函数对象,用于计算学习率的倍率因子, 该函数接受一个整数参数
  • last_epoch(可选):表示最后一个训练轮数的索引,默认值为 -1,表示从零开始计数

示例:

import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler

# 创建优化器
optimizer = optim.SGD(model.parameters(), lr=0.1)

# 定义学习率调度器的函数
def lr_lambda(epoch):
    if epoch < 10:
        return 0.1
    else:
        return 0.01

# 创建学习率调度器
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda)

# 在训练循环中更新学习率
for epoch in range(num_epochs):
    # 执行训练步骤
    train(...)
    
    # 更新学习率
    scheduler.step()

在上述示例中,首先创建了一个优化器 optimizer,然后定义了一个函数 lr_lambda,该函数根据训练轮数 epoch 返回学习率的倍率因子

接下来,使用 lr_scheduler.LambdaLR 创建了一个学习率调度器 scheduler,将优化器和函数 lr_lambda 作为参数传递给调度器

在训练循环中,先执行训练步骤,然后调用 scheduler.step() 来更新优化器的学习率

这样,学习率调度器会根据函数 lr_lambda 的返回值自动调整优化器的学习率

在示例中,前 10 轮训练的学习率为 0.1,之后的训练轮数学习率为 0.01

可以根据自己的需求自定义函数 lr_lambda,以实现不同的学习率调度策略

 注意:

不知道有没有小伙伴好奇为什么在创建学习率调度器scheduler的时候,lr_ scheduler. LambdaLR  (optimizer,lr_lambda)其中的  lr_lambda  不写成 lr_lambda(x) ???

这是因为在调用 lr_scheduler.LambdaLR(optimizer, lr_lambda) 时,lr_lambda 参数指定了一个函数对象,即自定义的函数 lr_lambda, 当学习率调度器需要计算新的学习率时,它会调用函数 lr_lambda ,并将当前的步数作为参数传递给 lr_lambda(x)

具体而言,在学习率调度器中,存在一个内部的计数器,用于追踪当前的步数

每当调用 scheduler.step() 方法时,计数器会增加,然后将当前的步数作为参数传递给学习率函数 lr_lambda,也就是函数 lr_lambda(x),  函数 lr_lambda(x) 根据当前的步数 x 来计算学习率的倍率因子,并返回该值

如果将  lr_lambda 设置为  lr_lambda(x),即函数调用的结果,那么在创建调度器时就会立即执行函数调用,将结果传递给 lr_lambda 参数,  这样做的问题是,调度器无法在运行时动态地调用函数来计算学习率,因为它只获得了一个静态的函数调用结果,而不是函数对象,  这将导致学习率调度器无法正确地根据训练进度调整学习率

 

torch.optim.lr_scheduler.LambdaLRPyTorch中的学习率调度器。它允许我们通过自定义函数来调整优化器的学习率。具体来说,我们可以定义一个接受一个整数参数epoch并返回一个浮点数的函数,该函数的返回值将作为相应时期的学习率因子。也就是说,如果在第epoch个时期调用该函数,那么这个时期的学习率将被设置为当前学习率乘上lr_lambda(epoch)的返回值。我们可以通过传入优化器对象和lr_lambda函数来创建一个LambdaLR对象,然后在训练过程中使用scheduler.step()来更新学习率。\[2\] 举个例子,假设我们想每3个epoch将学习率减半,我们可以定义一个规则函数,如下所示: ```python import torch from torch import nn import math class Net(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=2, stride=1, padding=0) def forward(self, x): out = self.conv(x) return out net = Net() def rule(epoch): lamda = math.pow(0.5, int(epoch / 3)) return lamda optimizer = torch.optim.SGD(\[{'params': net.parameters(), 'initial_lr': 0.1}\], lr=0.1) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=rule) for i in range(9): print("lr of epoch", i, "=>", scheduler.get_lr()) optimizer.step() scheduler.step() ``` 在这个例子中,我们定义了一个包含一个卷积层的神经网络模型Net,并定义了一个规则函数rule,该函数根据epoch的值返回一个学习率因子。然后,我们创建了一个SGD优化器对象optimizer和一个LambdaLR学习率调度器对象scheduler,并在每个epoch中使用optimizer.step()来更新模型参数,使用scheduler.step()来更新学习率。最后,我们打印出每个epoch的学习率。\[3\] #### 引用[.reference_title] - *1* *2* [【pytorchtorch.optim.lr_scheduler.LambdaLR() 学习率调整](https://blog.csdn.net/weixin_37804469/article/details/110939799)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Pytorch lr_scheduler.LambdaLR()的简单理解与用法](https://blog.csdn.net/qq_40714949/article/details/126287769)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值