SCI论文结构化阅读法

  • Author:ZERO-A-ONE
  • Date:2021-07-17

主要是B站视频sci论文结构科普|for准研究生&文献阅读困难户的观看笔记,私货

一、概论

首先是提高阅读效率的必要性主要有以下两点:

  • 文献阅读贯穿于我们科研过程中的每一个环节
  • 如果以最快的速度在一篇论文中找到有用的信息是广大科研工作者必须具有的一项基本能力

结构式阅读法本质上是一种目的导向的阅读方法,该方法能够被使用的前提是在你的脑子里需要构建一个目录,当你想要获取某种信息时,你能快速定位到该信息所在目录位置,以完成信息获取。这个目录就是【论文结构】

存在一种被广泛应用于SCI论文结构的行文结构,这种结构由六部分组成:

  • Introduction(引言)
  • Literature review(文献综述)
  • Methodology(方法论)
  • Results(研究结果)
  • Discussion(谈论)
  • Conclusion(总结)

当在看论文时,遇到这种结构或者这种结构的变体就可以应用结构化阅读法进行快速阅读

二、具体部分

2.1 Introduction

在这里插入图片描述

这部分最重要的信息时research aim(研究目标),是整篇论文的主旨,通常在Introduction(引言)的最后可以找到该信息。为了将research aim(研究目标)具体化,大部分论文还会给出研究目的/研究问题/研究假设。当然这三项在一篇论文中通常不是同时存在的,有可能只有其中一项或两项。一般会分成2~4点罗列出来,也就是论文会阐述清楚这篇论文是要达成哪几个研究目的或者要回答哪几个研究问题,又或者要验证哪几个研究假设。找到这些信息,就能大致把握整篇论文的研究话题

2.2 Literature review

Literature review(文献综述)在行文结构上主要有两个作用:

  • 交代Known information(已知信息),针对某个research topic目前已经有哪些相关研究得出哪些相关结论
  • 交代UnKnown information(未知信息),针对某些research topic目前还有哪些方面是还不清楚的,也就是本论文企图去填补的研究空白

如果你要了解某篇论文填补了哪些研究空白,那你去Literature review(文献综述)这部分找就行了。有一点需要注意的是,有些论文会将Literature review(文献综述)整合进Introduction(引言),而不是单独存在。不过无论哪种情况,Literature review(文献综述)在行文结构上的作用是不变的

2.3 Methodology

这部分主要是用于交代数据来源(data source),研究方法(methods),研究设计(research design)等信息,因此当你还不太清楚该使用哪种研究方法来展开研究时,或者当你还不清楚该使用何种数据去量化变量时,那就需要仔细阅读Methodology(方法论)部分

2.4 Results

这部分是对结果数据的客观描述可视化,需要注意的是,该部分内容只是结果数据的客观描述,很少或者说没有作者个人主观的论述。因此当你想了解某篇论文的实验结果时,那你需要着重阅读该部分内容。同时,该部分还会出现各种图表,这些都是研究结果数据的可视化

2.5 Discussion

这部分是对上述客观数据结果的解释,会去分析和讨论出现该种数据结果背后的原因,以及与以往研究做对比分析,同时还会交代本研究的亮点局限性,以及未来研究方向的建议。这部分对于内容对于自身的论文选题十分重要,因此当你在确定选题时,这部分是需要仔细阅读的

2.6 Conclusion

这部分主要是对全文做一个总结,以及本研究的贡献。因此要了解全文的中心思想,除了读Introduction(引言)的研究目标外,Conclusion(总结)也是一个不错的选择

有些论文会将results和discussion部分合在一起写,也有些论文会将discussion和conclusion部分合在一块写。不过不管怎么变化,他们各自在行文结构上的作用是不变的

三、总结

核心思想:基于【论文结构】,带着【目的】去论文中【检索】你需要的【有用信息】

Tips:

  • 不要使用各种论文翻译神器
  • 在论文阅读中去积累常用英文表达和专业词汇

自己采用这个方法做的一些思维导图:
在这里插入图片描述在这里插入图片描述

<think>嗯,用户现在需要写一篇综述,但完全没有头绪,而且所在校区没有实验条件,只能依赖线上学习。首先,我得理解用户的处境。他们可能是一个刚开始学术研究的学生,可能是在硕士或博士阶段,但缺乏写综述的经验,又没有实验资源,所以需要依赖文献和线上资源。 用户之前询问过计算生物学的学习计划,现在转向写综述,可能是因为他们的研究方向涉及该领域,需要整合现有知识。但写综述对新手来说确实有挑战,尤其是如何高效阅读文献、组织结构和确保内容全面。 用户提到没有实验条件,所以综述可能需要更侧重理论、方法学或现有数据分析,而不是实验结果的整合。这需要明确综述的范围,可能需要选择不依赖实验数据的主题,比如算法比较、数据库工具评估,或者理论模型的进展。 接下来,用户需要系统的步骤指导,包括如何选题、搜索文献、管理文献、撰写结构等。可能还需要推荐一些工具,比如文献管理软件(Zotero, EndNote)、学术搜索引擎(PubMed, Google Scholar)以及如何访问资源(比如学校图书馆的在线访问权限)。 另外,用户可能对如何批判性阅读文献、识别研究空白、综合不同研究结果感到困惑。这时候需要提供具体的方法,比如制作文献矩阵表,记录每篇文献的研究问题、方法、结论和不足,帮助发现模式和趋势。 还要考虑时间管理和分解任务,避免被大量文献压垮。建议分阶段进行,比如确定主题、初筛文献、深度阅读、撰写大纲、逐步填充内容等。每个阶段设定小目标,逐步推进。 可能存在的误区是用户一开始就想读遍所有文献,导致效率低下。应该教他们如何高效筛选文献,比如先找几篇高质量的综述作为起点,利用它们的参考文献,再通过数据库的引用追踪找到最新研究。 此外,用户可能需要心理支持,比如如何保持动力,处理写作障碍。可以建议加入学术写作小组,定期与导师或同行交流进度,获得反馈。 最后,确保推荐的资源和工具都是可在线获取的,适合没有实验条件的用户。例如,开放获取的期刊、预印本平台、在线数据库和学术社区论坛。</think>以下是为没有实验条件的综述撰写者定制的**系统化解决方案**,包含文献获取路径、线上工具链与结构化写作框架,特别强化理论型综述的产出效率: --- ### **第一阶段:精准定位(1-2周)** **核心任务**:确立理论型综述的可行方向(规避实验数据依赖) 1. **领域扫描**: - 使用 **ResearchRabbit**(https://www.researchrabbit.ai/)输入3-5篇已知关键论文,生成可视化文献网络图谱 - 关注 **arXiv q-bio** 板块(https://arxiv.org/)的预印本,捕捉最新理论突破 *示例*:若选"深度学习在蛋白质结构预测中的算法演进",可聚焦AlphaFold2、RoseTTAFold等纯计算方法 2. **问题聚焦**: - 制作 **"5W1H"提问矩阵** 筛选有价值议题: $$ \begin{cases} \text{What: 该领域核心矛盾是什么?(如传统MD模拟与AI预测的精度差异)} \\ \text{Why: 哪些理论瓶颈尚未突破?(如蛋白质折叠的能垒计算问题)} \\ \text{How: 现有解决方案如何分类?(第一性原理计算/机器学习混合方法等)} \end{cases} $$ --- ### **第二阶段:智能文献攻防战(3-4周)** **采用工具组合拳提升筛选效率**: 1. **批量获取**: - 通过 **Connected Papers**(https://www.connectedpapers.com/)获取种子文献的关联论文 - 使用 **Zotero + Sci-Hub** 自动抓取PDF(需配置浏览器插件) 2. **快速甄别**: - **TLDR插件**(https://www.tldrthis.com/)一键生成论文核心结论 - 在Excel中建立 **文献价值评分表**: | 论文ID | 创新性(1-5) | 方法普适性(1-5) | 被引量 | 是否精读 | |---|---|---|---|---| | PMID123 | 4 | 3 | 158 | √ | | PMID456 | 2 | 1 | 27 | × | 3. **深度解析**: - 用 **ChatPDF**(https://www.chatpdf.com/)上传重点论文,直接提问: *"请总结本文提出的新算法与传统方法相比的优势项"* - 在MarginNote中构建 **概念脑图**,自动提取论文中的术语关系 --- ### **第三阶段:理论型综述写作框架** **创新结构设计(规避实验数据短板)**: ```latex \section*{理论演进驱动的四段式结构} \begin{enumerate} \item \textbf{基础范式层}:用数学公式对比不同时期的理论框架 $$ \frac{\partial \mathcal{L}}{\partial \theta} \text{(梯度下降)} \quad VS \quad \Delta G_{\text{fold}} = RT\ln K \text{(热力学模型)} $$ \item \textbf{算法创新轴}:制作时间线图标注里程碑算法(使用TimelineJS工具) \item \textbf{收敛性分析}:通过LaTeX表格统计不同方法的误差收敛速率 \begin{tabular}{ccc} \hline 方法类型 & 时间复杂度 & 空间复杂度 \\ \hline 分子动力学 & $O(N^2)$ & $O(N)$ \\ GNN预测 & $O(N\log N)$ & $O(N^2)$ \\ \hline \end{tabular} \item \textbf{未来计算瓶颈}:用控制论框图展示理论冲突点 \begin{tikzpicture} \node[draw] (A) at (0,0) {采样不足}; \node[draw] (B) at (3,0) {维度灾难}; \draw[->] (A) -- (B); \end{tikzpicture} \end{enumerate} ``` --- ### **无实验条件下的替代方案** 1. **计算模拟验证**: - 使用 **Google Colab Pro** 运行开源代码(如AlphaFold的简化版实现) - 在 **Rosetta@Home**(https://boinc.bakerlab.org/)参与分布式计算,获取蛋白折叠案例数据 2. **理论矛盾可视化**: - 用 **Manim数学动画引擎** 制作算法对比视频(需Python基础) - 在 **Obsidian笔记软件** 中建立矛盾点双向链接网络 --- ### **关键资源包** 1. **文献管理**: - Zotero + Better BibTeX插件(自动同步参考文献) - Paper Digest(https://www.paperdigest.org/)每日推送领域摘要 2. **写作辅助**: - Overleaf在线LaTeX平台(含Springer/Nature模板) - Grammarly Academic版(优化学术表达) 3. **理论工具**: - Wolfram Alpha(解微分方程验证公式推导) - 中国知网《全球学术快报》(中文理论综述参考) --- ### **风险控制清单** - **文献过载**:启用 **Pareto法则**,20%高被引文献投入80%精力 - **逻辑混乱**:每周用 **Mermaid语法** 重绘一次理论关系图 - **写作卡顿**:采用 **反向写作法**,先完成所有图表再填充文字 建议先从"小综述"练手,例如在GitHub创建个人知识库,用Markdown撰写单点技术演进分析(如《从NW到BLAST:序列比对算法40年》),逐步扩展到完整论文。每完成一个章节即上传至Preprints.org(https://www.preprints.org/)获取同行反馈。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值