Step1 下载安装:
- Git bash:https://git-scm.com/download/win 用于在windows中运行shell脚本
- Wget:http://downloads.sourceforge.net/gnuwin32/wget-1.11.4-1-setup.exe 用于从互联网上下载数据
- 安装并配置环境变量
Step2 下载MNIST数据:
打开 git bash,运行caffe/data/mnist 下的get_mnist.sh文件
Step3 数据格式转换:
从网络下载的数据是二进制数据,无法直接在caffe框架下使用,需要转换成lmdb或者leveldb格式的数据
在\data\mnist目录下,新建一个create_mnist.bat,内容如下:
..scripts\build\examples\mnist\Release\convert_mnist_data.exe train-images.idx3-ubyte train-labels.idx1-ubyte ...\examples\mnist\mnist_train_lmdb
echo.
..\scripts\build\examples\mnist\Release\convert_mnist_data.exe t10k-images.idx3-ubyte t10k-labels.idx1-ubyte ..\examples\mnist\mnist_test_lmdb
pause
执行create_mnist.bat文件,在examples\mnist目录下生成了对应的训练和测试集数据:
Step4 修改文件:
- 用notepad打开\examples\mnist下的lenet_train_test.prototxt文件:将下面两处改为绝对路径
2. 用notepad打开\examples\mnist下的lenet_solver.prototxt文件,将2行和23行设为绝对路径,25行设为CPU
Step5 训练:
在..\examples\mnist文件夹下编写run.bat文件
..\scripts\build\tools\Release\caffe.exe train --solver=..\examples\mnist\lenet_solver.prototxt
Pause
双击运行run.bat,训练结束如下图所示
训练完成后,会在..\examples\mnist文件夹下出现5000次和10000次的模型
Step6 测试模型:
在..\examples\mnist文件夹下创建test_mnist.bat文件,内容如下:
..\scripts\build\tools\Release\caffe.exe test --model=..\examples\mnist\lenet_train_test.prototxt -weights=..\examples\mnist\lenet_iter_10000.caffemodel
Pause
精度为0.9869,至此测试结束。