机器学习(一) 线性回归

 

监督学习:通过分析已有的训练数据,得出最优模型,进而对未知数据进行预测。

无监督学习:事先没有训练数据,直接对数据进行建模

分类和回归属于监督学习,之所以称之为监督学习,是因为这类算法必须知道预测什么,即目标变量的分类信息。

无监督学习,此时数据没有类别信息,也不会给定目标值。在无监督学习中,将数据集合分成由类似的对象组成的多个类的过程被称为聚类;将寻找描述数据统计值的过程称之为密度估计。此外,无监督学习还可以减少数据特征的维度,以便我们可以使用二维或三维图形更加直观地展示数据信息。

监督学习:线性回归,分类…..

 

P1:线性回归

样本拟合方程

                          

 

其中,(x,y)为样本数据;n:数据特征数目;θ:为各项特征的参数,即权重。

回归目的:计算θ,使得h(x)与y的误差最小,基于最小二乘法,得

 

即,计算θ,使得J(θ)的误差最小。m :为样本容量。

下面介绍实现回归的几种算法:梯度下降,最小二乘法,局部加权线性回归

一,梯度下降(Gradient descent)

给定初始θ,逐步更新θ值:

α:Learning rate, 决定下降速度。

J对θ求导,得:

 

计算过程:

循环直至收敛{

 

}

梯度下降方法,每次循环都要对所有样本参数进行计算;当样本容量很大的时候,计算量会很大;一种解决办法就是随机梯度下降(stochastic gradient descent),计算过程如下:

循环{

}

m : 为样本容量;每次循环只对一组数据进行计算。

 

二, 正规方程(Normal equations)最小二乘解

梯度下降方程可写为如下形式:θ≔ θ- α* ∇θ J

 

定义:

   

 

So,

优化目的即使∇θ J(θ)=0, 即

最后得出,

 

此解即为超定方程的Ax = b最小二乘解:A^T Ax= A^T b

 

得, x= 〖(A^T A)〗^(-1) A^T b .

备注:若矩阵不可逆,可使用伪逆矩阵。

三,局部加权线性回归(Locally weighted linear regression)

对于上述的线性拟合方法,选择不同的特征函数就会出现不同的拟合结果,下图分别为使用1/2/6次方程线性拟合的结果,1/6次方程的线性拟合分别造成欠拟合与过拟合的现象:

为缓解特征选取的需求,提出非参数学习算法,局部加权线性回归即其中一种。

参数学习算法(Parameters learning algorithm): 固定数目的参数

非参数学习算法(Non-parameters learning algorithm): 参数数目随样本容量增加。

下面介绍局部加权线性回归(Loess):

算法:

其中, 为权值,进行拟合点的选取,公式如下:

为钟形函数,不具有任何类似高斯函数的意义。当x(i)距离测试点x近时,权值较大;反之,权值很小。τ:带宽,确定选择的范围。

缺点:每进行一次预测,都要对所有数据进行一次线性拟合,计算量大。

问题:如何选择τ

 

四,概率解释

本节是对最小二乘法实现线性回归的解释,即为什么使用最小二乘法;赋予最小二乘法概率意义。

Step1: 假设线性回归的函数为:

其中,为误差,假设服从正态分布,即,ϵ^((i))~ ℵ(0,σ^2)

 

采用正态分布的原因:1,对于大部分的线性回归,误差都服从于正态分布;2,基于中心极限定理。

Step2: 得误差的概率密度函数:

 

其中,x(i)为随机变量,θ为未知参数,具有具体的值,不是随机变量。(频率学派观点)

Step2:参数的最大似然估计,参数的似然性等价于数据的概率,似然函数如下:

 

参数的最大似然估计,即选择θ使数据出现的概率尽可能大,求θ使L(θ)最大,过程如下:

其中,J(θ)即

结论:参数θ的最大似然估计等价于最小化J(θ)-----最小二乘法的概率意义。

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值