数值分析(8)-最佳一致逼近多项式

整理一下数值分析的笔记~
目录:

1. 误差
2. 多项式插值与样条插值
3. 函数逼近(THIS)
4. 数值积分与数值微分
5. 线性方程组的直接解法
6. 线性方程组的迭代解法
7. 非线性方程求根
8. 特征值和特征向量的计算
9. 常微分方程初值问题的数值解

1. 基本概念及其理论

  设 f ∈ C [ a , b ] f\in C[a,b] fC[a,b],在 H n = s p a n H_n=span Hn=span{ 1 , x , . . . , x n 1,x,...,x^n 1,x,...,xn}中求多项式 P n ∗ ( x ) P_n^*(x) Pn(x)使其误差 ∣ ∣ f − P n ∗ ∣ ∣ ∞ = m a x a ≤ x ≤ b ∣ f ( x ) − P n ∗ ( x ) ∣ = m i n P n ∈ H n m a x a ≤ x ≤ b ∣ f ( x ) − P n ( x ) ∣ ||f-P_n^*||_{\infty}=max_{a\leq x\leq b}|f(x)-P_n^*(x)|=min_{P_n \in H_n}max_{a\leq x \leq b}|f(x)-P_n(x)| fPn=maxaxbf(x)Pn(x)=minPnHnmaxaxbf(x)Pn(x),其中 H n H_n Hn表示由所有次数不超过 n n n的代数多项式构成的线性空间,这就是 C [ a , b ] C[a,b] C[a,b]空间中的最佳一致逼近或切比雪夫逼近问题。

定义1:设 P n ∈ H n , f ( x ) ∈ C [ a , b ] P_n \in H_n,f(x) \in C[a,b] PnHn,f(x)C[a,b],称 Δ f ( , P n ) = ∣ ∣ f − P n ∣ ∣ ∞ = m a x a ≤ x ≤ b ∣ f ( x ) − P n ( x ) ∣ \Delta f(,P_n)=||f-P_n||_{\infty}=max_{a\leq x\leq b}|f(x)-P_n(x)| Δf(,Pn)=fPn=maxaxbf(x)Pn(x) f ( x ) f(x) f(x) P n ( x ) P_n(x) Pn(x) [ a , b ] [a,b] [a,b]上的偏差, Δ ( f , P n ) \Delta(f,P_n) Δ(f,Pn)的全体组成一个集合,记为{ Δ ( f , P n ) \Delta(f,P_n) Δ(f,Pn)},下界为0.

若记集合的下确界为: E n = i n f P n ∈ H n E_n=inf_{P_n\in H_n} En=infPnHn{ Δ ( f , P n ) \Delta(f,P_n) Δ(f,Pn)} = i n f P n ∈ H n m a x a ≤ x ≤ b ∣ f ( x ) − P n ( x ) ∣ =inf_{P_n \in H_n}max_{a\leq x \leq b}|f(x)-P_n(x)| =infPnHnmaxaxbf(x)Pn(x),称为 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的最小偏差。

定义2:假定 f ∈ C [ a , b ] f \in C[a,b] fC[a,b]若存在 P n ∗ ∈ H n P_n^* \in H_n PnHn使得 Δ ( f , P n ∗ ) = E n \Delta(f,P_n^*)=E_n Δ(f,Pn)=En则称 P n ∗ P_n^* Pn f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的 n n n次最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。

定理1:若 f ∈ [ a , b ] f\in [a,b] f[a,b]则总存在 P n ∗ ∈ H n P_n^* \in H_n PnHn使得 ∣ ∣ f ( x ) − P n ∗ ( x ) ∣ ∣ ∞ = E n ||f(x)-P_n^*(x)||_{\infty}=E_n f(x)Pn(x)=En。{最佳逼近多项式的存在性定理(Borel定理)}

定义3:设 f ∈ [ a , b ] , P ( x ) ∈ H n f\in [a,b],P(x)\in H_n f[a,b],P(x)Hn,若存在 x = x 0 x=x_0 x=x0上有 ∣ P ( x 0 ) − f ( x 0 ) ∣ = m a x a ≤ x ≤ b ∣ P ( x ) − f ( x ) ∣ = μ |P(x_0)-f(x_0)|=max_{a \leq x \leq b}|P(x)-f(x)|=\mu P(x0)f(x0)=maxaxbP(x)f(x)=μ,就称 x 0 x_0 x0 P ( x ) P(x) P(x)的偏差点,若 P ( x ) − f ( x ) = μ P(x)-f(x)=\mu P(x)f(x)=μ,正偏差点,否则,负偏差点。由于 P ( x ) − f ( x ) P(x)-f(x) P(x)f(x) [ a , b ] [a,b] [a,b]上连续,所以至少存在一个点使得 ∣ P ( x 0 ) − f ( x 0 ) ∣ = μ |P(x_0)-f(x_0)|=\mu P(x0)f(x0)=μ,有引理”设 f ( x ) ∈ C [ a , b ] , P n ∗ ( x ) f(x) \in C[a,b],P_n^*(x) f(x)C[a,b],Pn(x) f ( x ) f(x) f(x) n n n次最佳一致逼近多项式,则 f ( x ) − P n ∗ ( x ) f(x)-P_n^*(x) f(x)Pn(x)必同时存在正负偏差点。“

定理2 P ( x ) ∈ H n P(x) \in H_n P(x)Hn f ∈ C [ a , b ] f\in C[a,b] fC[a,b]的最佳逼近多项式的充分必要条件是 P ( x ) P(x) P(x) [ a , b ] [a,b] [a,b]上至少有 n + 2 n+2 n+2个轮流正负的偏差点,即有 n + 2 n+2 n+2个点$ a \leq x_1 <x_2<…<x_{n+2} \leq b$使:

P ( x k ) − f ( x k ) = ( − 1 ) k σ ∣ ∣ P ( x ) − f ( x ) ∣ ∣ ∞ , σ = ± 1 P(x_k)-f(x_k)=(-1)^k \sigma||P(x)-f(x)||_{\infty},\\ \sigma=\pm1 P(xk)f(xk)=(1)kσP(x)f(x),σ=±1

这样的点组称为切比雪夫交错点组。

定理3:在区间 [ − 1 , 1 ] [-1,1] [1,1]上所有最高次项系数为1的n次多项式中 ω n ( x ) = 1 2 n − 1 T n ( x ) \omega_n(x)=\frac{1}{2^{n-1}}T_n(x) ωn(x)=2n11Tn(x)与零的偏差最小,为 1 2 n − 1 \frac{1}{2^{n-1}} 2n11。{ ω n ( x ) = x n − P n − 1 ∗ ( x ) \omega_n(x)=x^n-P^*_{n-1}(x) ωn(x)=xnPn1(x)}

:求 f ( x ) = 2 x 3 + x 2 + 2 x − 1 f(x)=2x^3+x^2+2x-1 f(x)=2x3+x2+2x1在[-1,1]上的最佳2次逼近多项式。

:所求最佳逼近多项式 P 2 ∗ ( x ) P_2^*(x) P2(x)应满足 m a x − 1 ≤ x ≤ 1 ∣ f ( x ) − P 2 ∗ ( x ) ∣ = m i n max_{-1\leq x \leq 1}|f(x)-P_2^*(x)|=min max1x1f(x)P2(x)=min,由定理3可知 f ( x ) − P 2 ∗ ( x ) = 1 2 T 3 ( x ) = 2 x 3 − 3 2 x f(x)-P_2^*(x)=\frac{1}{2}T_3(x)=2x^3-\frac{3}{2}x f(x)P2(x)=21T3(x)=2x323x时多项式 f ( x ) − P 2 ∗ ( x ) f(x)-P_2^*(x) f(x)P2(x)与零偏差最小,故 P 2 ∗ ( x ) − f ( x ) = 1 2 T 3 ( x ) = x 2 + 7 2 − 1 P_2^*(x)-f(x)=\frac{1}{2}T_3(x)=x^2+\frac{7}{2}-1 P2(x)f(x)=21T3(x)=x2+271,就是 f ( x ) f(x) f(x)在[-1,1]上的最佳2次逼近多项式。

2. 最佳一次逼近多项式

定理2给出了P(x)的特性,当n=1时至少存在三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3满足定理中的条件,设最佳一次逼近多项式为 P 1 ( x ) = a 0 + a 1 x P_1(x)=a_0+a_1x P1(x)=a0+a1x,推导得:

a 0 = f ( a ) + f ( x 2 ) 2 − f ( b ) − f ( a ) b − a ( x − a + x 2 2 ) a_0=\frac{f(a)+f(x_2)}{2}-\frac{f(b)-f(a)}{b-a}\left(x-\frac{a+x_2}{2}\right) a0=2f(a)+f(x2)baf(b)f(a)(x2a+x2)

a 1 = f ( b ) − f ( a ) b − a = f ′ ( x 2 ) a_1=\frac{f(b)-f(a)}{b-a}=f&#x27;(x_2) a1=baf(b)f(a)=f(x2)

:求 f ( x ) = 1 + x 2 在 区 间 [ 0 , 1 ] f(x)=\sqrt{1+x^2}在区间[0,1] f(x)=1+x2 [0,1]上的最佳一次逼近多项式。

解: a 1 = 2 − 1 ≈ 0.414 a_1=\sqrt{2}-1\approx 0.414 a1=2 10.414,又 f ′ ( x ) = x 1 + x 2 所 以 x 2 1 + x 2 2 = 2 − 1 f&#x27;(x)=\frac{x}{\sqrt{1+x^2}}所以\frac{x_2}{\sqrt{1+x_2^2}}=\sqrt2-1 f(x)=1+x2 x1+x22 x2=2 1,解得 x 2 = 2 − 1 2 = ≈ 0.4551 , f ( x 2 ) = 1 + x 2 2 ≈ 1.0986 , 得 a 0 = 1 + 1 + x 2 2 2 − a 1 x 2 2 ≈ 0.955 x_2=\sqrt{\frac{\sqrt2-1}{2}}=\approx 0.4551,f(x_2)=\sqrt{1+x_2^2}\approx 1.0986,得a_0=\frac{1+\sqrt{1+x^2_2}}{2}-a_1\frac{x_2}{2}\approx 0.955 x2=22 1 =0.4551,f(x2)=1+x22 1.0986,a0=21+1+x22 a12x20.955。所以 f ( x ) 得 最 佳 一 次 逼 近 多 项 式 为 : P 1 ( x ) = 0.955 + 0.414 x f(x)得最佳一次逼近多项式为:P_1(x)=0.955+0.414x f(x)P1(x)=0.955+0.414x

根据例题的1结论令 x = b a ≤ 1 有 1 + ( b a ) 2 = 0.955 + 0.414 ( b a ) , 即 a 2 + b 2 ≈ 0.955 a + 0.414 b x=\frac{b}{a}\leq1有\sqrt{1+(\frac{b}{a})^2}=0.955+0.414(\frac{b}a),即\sqrt{a^2+b^2}\approx 0.955a+0.414b x=ab11+(ab)2 =0.955+0.414(ab),a2+b2 0.955a+0.414b

3. 最佳平方逼近的计算

f ( x ) ∈ C [ a , b ] f(x) \in C[a,b] f(x)C[a,b],记其最佳平方逼近多项式为: S ∗ ( x ) = a 0 ∗ + a 1 ∗ x + a 2 ∗ x 2 + . . . . + a n ∗ x n S^*(x)=a_0^*+a_1^*x+a_2^*x^2+....+a_n^*x^n S(x)=a0+a1x+a2x2+....+anxn H H H表示希尔伯特矩阵:

[ 1 1 / 2 . . . 1 / ( n + 1 ) 1 / 2 1 / 3 . . . 1 / ( n + 2 ) . . . . . . . . . . . . 1 / ( n + 1 ) 1 / ( n + 2 ) . . . 1 / ( 2 n + 1 ) ] \left[\begin{matrix} 1 &amp; 1/2 &amp; ... &amp; 1/(n+1) \\ 1/2 &amp; 1/3 &amp; ... &amp;1/(n+2) \\ ...&amp;...&amp;...&amp;...\\ 1/(n+1)&amp;1/(n+2) &amp;... &amp; 1/(2n+1) \end{matrix}\right] 11/2...1/(n+1)1/21/3...1/(n+2)............1/(n+1)1/(n+2)...1/(2n+1)

又系数 a = ( a 0 , a 1 , . . . , a n ) T , d = ( d 0 , d 1 , . . . , d n ) T , 其 中 d k = ∫ 0 1 f ( x ) x k d x a=(a_0,a_1,...,a_n)^T,d=(d_0,d_1,...,d_n)^T,其中d_k=\int_0^1f(x)x^kdx a=(a0,a1,...,an)T,d=(d0,d1,...,dn)T,dk=01f(x)xkdx,解方程: H a = d Ha=d Ha=d得系数 a a a

δ ( x ) = f ( x ) − S ∗ ( x ) \delta(x)=f(x)-S^*(x) δ(x)=f(x)S(x)则平方误差为:

∣ ∣ δ ( x ) ∣ ∣ 2 2 = ( f ( x ) − S ∗ ( x ) , f ( x ) − S ∗ ( x ) ) = ( f ( x ) , f ( x ) ) − ( S ∗ ( x ) , f ( x ) ) = ∣ ∣ f ( x ) ∣ ∣ 2 2 − ∑ k = 0 n a k ∗ ( ∅ k ( x ) , f ( x ) ) . ||\delta(x)||_2^2=(f(x)-S^*(x),f(x)-S^*(x))\\ =(f(x),f(x))-(S^*(x),f(x))\\ =||f(x)||_2^2-\sum_{k=0}^na_k^*(\empty_k(x),f(x)). δ(x)22=(f(x)S(x),f(x)S(x))=(f(x),f(x))(S(x),f(x))=f(x)22k=0nak(k(x),f(x)).

:设 f ( x ) = 1 + x 2 f(x)=\sqrt{1+x^2} f(x)=1+x2 ,求[0,1]上得一次最佳平方逼近多项式。

:得 d 0 = ∫ 0 1 1 + x 2 d x = 1 2 l n ( 1 + 2 ) ≈ 1.147 d_0=\int_0^1\sqrt{1+x^2}dx=\frac1{2}ln(1+\sqrt2) \approx 1.147 d0=011+x2 dx=21ln(1+2 )1.147, d 1 = ∫ 0 1 x 1 + x 2 d x ≈ 0.609 d_1=\int_0^1x\sqrt{1+x^2}dx \approx 0.609 d1=01x1+x2 dx0.609,得方程组:

[ 1 1 / 2 1 / 2 1 / 3 ] [ a 0 a 1 ] = [ 1.147 0.609 ] \left[\begin{matrix} 1&amp;1/2\\ 1/2&amp;1/3 \end{matrix}\right]\left[\begin{matrix} a_0\\ a_1 \end{matrix}\right]=\left[\begin{matrix} 1.147\\ 0.609 \end{matrix}\right] [11/21/21/3][a0a1]=[1.1470.609]

解得 a 0 = 0.934 , a 1 = 0.426 , 故 S 1 ∗ ( x ) = 0.934 + 0.426 x a_0=0.934,a_1=0.426,故S_1^*(x)=0.934+0.426x a0=0.934,a1=0.426,S1(x)=0.934+0.426x,平方误差:

∣ ∣ δ ( x ) ∣ ∣ 2 2 = ( f ( x ) , f ( x ) ) − ( S 1 ∗ ( x ) , f ( x ) ) = ∫ 0 1 ( 1 + x 2 ) d x − 0.426 d 1 − 0.934 d 0 = 0.0026 ||\delta(x)||_2^2=(f(x),f(x))-(S^*_1(x),f(x))\\ =\int_0^1(1+x^2)dx-0.426d_1-0.934d_0=0.0026 δ(x)22=(f(x),f(x))(S1(x),f(x))=01(1+x2)dx0.426d10.934d0=0.0026

最大误差: ∣ ∣ δ ( x ) ∣ ∣ ∞ = m a x 0 ≤ x ≤ 1 ∣ 1 + x 2 − S 1 ∗ ( x ) ∣ ≈ 0.066 ||\delta(x)||_{\infty}=max_{0 \leq x \leq1}|\sqrt{1+x^2}-S_1^*(x)|\approx 0.066 δ(x)=max0x11+x2 S1(x)0.066

但是n较大时系数矩阵高度病态。

4. 用正交函数族作最佳平方逼近

f ( x ) ∈ C [ a , b ] 在 φ f(x)\in C[a,b]在\varphi f(x)C[a,b]φ中得最佳平方逼近函数为:

S ∗ ( x ) = ∑ k = 0 n ( f ( x ) , φ ( x ) ) ∣ ∣ φ ( x ) ∣ ∣ 2 2 φ ( x ) S^*(x)=\sum_{k=0}^n\frac{(f(x),\varphi(x))}{||\varphi(x)||_2^2}\varphi(x) S(x)=k=0nφ(x)22(f(x),φ(x))φ(x)

其中 φ k ( x ) \varphi_k(x) φk(x)是正交函数族,均方误差:

∣ ∣ δ n ( x ) ∣ ∣ 2 = ∣ ∣ f ( x ) − S n ∗ ( x ) ∣ ∣ 2 = ( ∣ ∣ f ( x ) ∣ ∣ 2 2 − ∑ k = 0 n [ f ( x ) , φ k ( x ) ∣ ∣ φ k ( x ) ∣ ∣ 2 ] 2 ) 1 2 ||\delta_n(x)||_2=||f(x)-S_n^*(x)||_2\\ =\left(||f(x)||_2^2-\sum_{k=0}^n\left[\frac{f(x),\varphi_k(x)}{||\varphi_k(x)||_2} \right]^2\right)^{\frac{1}{2}} δn(x)2=f(x)Sn(x)2=(f(x)22k=0n[φk(x)2f(x),φk(x)]2)21

由此可得贝塞尔不等式: ∑ k = 1 n ( a k ∗ ∣ ∣ φ k ( x ) ∣ ∣ 2 ) 2 ≤ ∣ ∣ f ( x ) ∣ ∣ − 2 2 \sum_{k=1}^n(a_k^*||\varphi_k(x)||_2)^2\leq ||f(x)||-2^2 k=1n(akφk(x)2)2f(x)22,

其中 a k ∗ = ( f ( x ) , φ ( x ) ) / ( φ k ( k ) , φ k ( x ) ) , k = 0 , 1 , 2 , . . . , n a_k^*=(f(x),\varphi(x))/(\varphi_k(k),\varphi_k(x)),k=0,1,2,...,n ak=(f(x),φ(x))/(φk(k),φk(x)),k=0,1,2,...,n

∑ k = 0 ∞ a k ∗ φ k ( x ) \sum_{k=0}^{\infty}a_k^*\varphi_k(x) k=0akφk(x)称为广义傅里叶级数, a k ∗ a_k^* ak为广义傅里叶系数,若正交函数族可以由 1 , x , x 2 , . . . , x n 1,x,x^2,...,x^n 1,x,x2,...,xn正交化得到,有如下收敛定理:

定理4:设 f ( x ) ∈ C [ a , b ] , S ∗ ( x ) f(x)\in C[a,b],S^*(x) f(x)C[a,b],S(x)是f(x)的最佳平方逼近多项式,其中{ φ k ( x ) , k = 0 , 1 , . . . , n \varphi_k(x),k=0,1,...,n φk(x),k=0,1,...,n}是正交多项式族,则又 l i m n → ∞ ∣ ∣ f ( x ) − S n ∗ ( x ) ∣ ∣ 2 = 0 lim_{n \rarr \infty}||f(x)-S_n^*(x)||_2=0 limnf(x)Sn(x)2=0,按勒让德多项式{ P 0 ( x ) , . . . , P n ( x ) P_0(x),...,P_n(x) P0(x),...,Pn(x)}展开得:

S n ∗ ( x ) = a 0 ∗ P 0 ( x ) = . . . + a n ∗ P n ( x ) S_n^*(x)=a_0^*P_0(x)=...+a_n^*P_n(x) Sn(x)=a0P0(x)=...+anPn(x)

其中

a k ∗ ( x ) = ( f ( x ) , P k ( x ) ) ( P k ( x ) , P k ( x ) ) = 2 k + 1 2 ∫ − 1 1 f ( x ) P k ( x ) d x a_k^*(x)=\frac{(f(x),P_k(x))}{(P_k(x),P_k(x))}\\ =\frac{2k+1}{2}\int_{-1}^1f(x)P_k(x)dx ak(x)=(Pk(x),Pk(x))(f(x),Pk(x))=22k+111f(x)Pk(x)dx

平方误差为:

∣ ∣ δ k ( x ) ∣ ∣ 2 2 = ∫ − 1 1 f 2 ( x ) d x − ∑ k = 0 n 2 2 k + 1 a ∗ 2 ||\delta_k(x)||_2^2=\int_{-1}^1f^2(x)dx-\sum_{k=0}^n\frac{2}{2k+1}a^{*2} δk(x)22=11f2(x)dxk=0n2k+12a2

定理5:设 f ( x ) ∈ C 2 [ − 1 , 1 ] , S n ∗ f(x)\in C^2[-1,1],S_n^* f(x)C2[1,1],Sn勒让德展开得,则对任意 x ∈ [ − 1 , 1 ] 和 所 有 的 ε &gt; 0 x \in [-1,1]和所有的\varepsilon &gt;0 x[1,1]ε>0,当n充分大时有 ∣ f ( x ) − S n ∗ ( x ) ∣ ≤ ε n |f(x)-S_n^*(x)| \leq \frac{\varepsilon}{\sqrt n} f(x)Sn(x)n ε

定理6:在所有最高次项系数为1 的n次多项式中,勒让德多项式 P ˉ n ( x ) \bar P_n(x) Pˉn(x)在[-1,1]上与零的 平方误差最小。

:求 f ( x ) = e x f(x)=e^x f(x)=ex在[-1,1]上的三次最佳平方逼近多项式。

:先计算 ( f ( x ) , P ˉ k ( x ) ) ( 勒 让 德 多 项 式 ) , k = 0 , 1 , 2 , 3 (f(x),\bar P_k(x))(勒让德多项式),k=0,1,2,3 (f(x),Pˉk(x))(),k=0,1,2,3,有:

( f ( x ) , P 0 ( x ) ) = ∫ − 1 1 e x d x = ≈ 2.3504 ( f ( x ) , P 1 ( x ) ) = ∫ − 1 1 x e x d x = ≈ 0.7358 ( f ( x ) , P 2 ( x ) ) = ∫ − 1 1 ( 3 2 x 2 − 1 2 ) e x d x = ≈ 0.1431 ( f ( x ) , P 3 ( x ) ) = ∫ − 1 1 ( 5 2 x 3 − 3 2 x ) e x d x = ≈ 0.02013 (f(x),P_0(x))=\int_{-1}^1e^xdx= \approx 2.3504\\ (f(x),P_1(x))=\int_{-1}^1xe^xdx=\approx 0.7358\\ (f(x),P_2(x))=\int_{-1}^1(\frac{3}{2}x^2-\frac{1}{2})e^xdx=\approx 0.1431\\ (f(x),P_3(x))=\int_{-1}^1(\frac{5}{2}x^3-\frac{3}{2}x)e^xdx=\approx 0.02013 (f(x),P0(x))=11exdx=2.3504(f(x),P1(x))=11xexdx=0.7358(f(x),P2(x))=11(23x221)exdx=0.1431(f(x),P3(x))=11(25x323x)exdx=0.02013

可知:

a 0 ∗ = ( f ( x ) , P 0 ( x ) ) / 2 = 1.1752 a 1 ∗ = 3 ( f ( x ) , P 1 ( x ) ) / 2 = 1.1036 a 2 ∗ = 5 ( f ( x ) , P 2 ( x ) ) / 2 = 0.3578 a 3 ∗ = 7 ( f ( x ) , P 3 ( x ) ) / 2 = 0.07046 a_0^*=(f(x),P_0(x))/2=1.1752\\ a_1^*=3(f(x),P_1(x))/2=1.1036\\ a_2^*=5(f(x),P_2(x))/2=0.3578\\ a_3^*=7(f(x),P_3(x))/2=0.07046 a0=(f(x),P0(x))/2=1.1752a1=3(f(x),P1(x))/2=1.1036a2=5(f(x),P2(x))/2=0.3578a3=7(f(x),P3(x))/2=0.07046

由此知三次最佳平方逼近多项式:

S ∗ ( x ) = 0.9963 + 0.9979 x + 0.5367 x 2 + 0.1761 x 3 S^*(x)=0.9963+0.9979x+0.5367x^2+0.1761x^3 S(x)=0.9963+0.9979x+0.5367x2+0.1761x3,均方误差为: ∣ ∣ δ n ( x ) ∣ ∣ 2 = ∣ ∣ e x − S 3 ∗ ( x ) ∣ ∣ 2 = ∫ − 1 1 e 2 x − ∑ k = 0 3 2 2 k + 1 a k ∗ 2 ≤ 0.0084 ||\delta_n(x)||_2=||e^x-S^*_3(x)||_2=\sqrt{\int_{-1}^1e^{2x}-\sum^3_{k=0} \frac{2}{2k+1}a_k^{*2}}\leq0.0084 δn(x)2=exS3(x)2=11e2xk=032k+12ak2 0.0084

最大误差 ∣ ∣ δ n ( x ) ∣ ∣ 2 = ∣ ∣ e x − S 3 ∗ ( x ) ∣ ∣ ∞ ≤ 0.0112 ||\delta_n(x)||_2=||e^x-S_3^*(x)||_{\infty}\leq0.0112 δn(x)2=exS3(x)0.0112


{持续更新}
欢迎扫描二维码关注微信公众号 深度学习与数学   [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]
在这里插入图片描述

  • 17
    点赞
  • 104
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值