弱监督
不会算命的赵半仙
这个作者很懒,什么都没留下…
展开
-
图像语义分割(12)-重新思考空洞卷积: 为弱监督和半监督语义分割设计的简捷方法
论文中提出将已经表明的区域的知识推广到相邻的不确定的区域以产生密集的目标定位预测。为了实现这个目标,论文重新思考空洞卷积,发现空洞卷积在扩张感受野的同时不会增加过多的计算代价,这种特性对于将已判明区域的指示推广至未判明相邻区域非常适合,由此文章设计了多空洞率的卷积块来增强标准的分类模型.原创 2018-12-21 12:14:53 · 4489 阅读 · 3 评论 -
(CVPR2019)图像语义分割(22) FickleNet-使用随机推理的用于弱监督和半监督的图像语义分割
论文提出FickleNet,探索深度卷积神经网络特征图不同位置的组合,学习神经网络各隐藏单元的一致性关系以识别目标的显著部分同时获得精准的边界以及其他部分。FickleNet通过Dropout层实现卷积神经网络隐藏层各单元的随机结合,为单幅图像上产生多个位置图,得到多个形状不同的区域,从而更快地描绘出目标的轮廓,FickleNet可以视为不需要多个扩张率就可以匹配不同形状和尺寸目标的扩展卷积的推广,只需在任一语义分割模型上添加一简单层,就可以在Pascal VOC 2012上的弱监督和半监督方法中取得较好的原创 2019-09-09 16:07:02 · 2473 阅读 · 0 评论 -
(NeurIPS 2019) Gated CRF Loss -一种用于弱监督图像语义分割的新型损失函数
该论文提出了一种简单却有效的损失函数用于弱监督图像语义分割模型的训练,使用标准交叉熵损失用于有标注像素点,使用新型的门控CRF损失用于无标注像素点。整个方法不需要额外的预处理或后处理,能够端到端的训练。方法在基于点击和基于描画的弱监督标注数据中都取得了SOTA效果原创 2019-10-10 19:47:42 · 2206 阅读 · 0 评论