【RAG】浅谈大模型之RAG技术(原理、架构)

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了检索和生成的深度学习模型架构。RAG 的概念首次于 2020 年被提出,随后进入高速发展,RAG的产生主要源自于大模型自身存在的局限性,如面对未知的问题,大模型仍然会给出看似合理的错误回答,让用户难辨真假。RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。

幻觉问题:面对未知的问题,大模型仍然会给出看似合理的错误回答,让用户难辨真假,这就是大模型的幻觉问题。大模型产生幻觉是因其训练的本质,即经过大量的训练后,预测下一个token。所以面对未知的问题,大模型不知“自己不知道”,只是在预测下一个概率高的token。

RAG论文Retrieval-Augmented Generation for Large Language Models: A Survey

一个经典的RAG流程,包括三个基本步骤:

(1)索引:将文档分割成块,并通过编码器构建成向量索引,存储在向量数据库中;

(2)检索:根据问题与块的语义相似性检索相关的文档片段;

(3)生成:将检索到的上下文作为条件,生成最终答案。 

完整过程:RAG 系统通常基于一个文本文档的语料库,首先把文本分割成块,然后把这些分块嵌入到向量与transformer编码器模型,把所有这些向量建立索引,最后创建一个 LLM 提示语,告诉模型回答用户的查询,给出在搜索步骤中找到的上下文。在运行时,我们用相同的编码器模型完成用户查询的向量化,然后执行这个查询向量的索引搜索,找到top-k 的结果,从数据库中检索到相应的文本块,并提供给 LLM 提示语Prompt作为上下文。

RAG通过检索相关信息来增强模型的生成能力,有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,提供了一种更加灵活、准确和安全的解决方案。 

应用案例:

(一)智能问答系统
在智能客服、智能助手等问答应用中,RAG 技术展现出卓越的性能。以某大型电商平台的客服系统为例,其知识库中存储了海量的商品信息、售后服务条款、常见问题解答等。当用户咨询关于某一商品的使用方法或退换货政策时,系统通过 RAG 快速检索相关文档,如该商品的详细说明书、以往类似问题的处理案例等,并结合这些信息为用户提供精准的回答。这大大提高了客服响应的速度和准确性,减少了用户等待时间,提升了用户体验。

(二)内容创作辅助
对于新闻媒体、文案撰写等领域,RAG 也成为得力助手。例如,在撰写一篇科技领域的新闻报道时,记者可以输入主题关键词,系统从科技新闻数据库、专业研究报告等知识源中检索相关信息,如最新的科研成果、行业动态、专家观点等。这些检索到的素材为记者提供了丰富的创作灵感和事实依据,帮助他们快速生成内容丰富、信息准确的新闻稿件,同时确保报道的时效性和专业性。

(三)医疗健康领域
在医疗领域,RAG 技术的应用意义非凡。医生在诊断复杂病例时,可以借助 RAG 系统检索大量的医学文献、临床案例以及最新的医学研究成果。例如,面对罕见病患者,系统能够快速从全球范围内的医学知识库中找到相似病例的诊断思路和治疗方案,为医生提供参考,辅助制定更科学合理的治疗计划。这有助于提高医疗诊断的准确性,推动医学知识的共享与传承,造福更多患者。

优势与挑战:

(一)优势

知识更新及时:能够快速整合外部新知识源,确保生成内容反映最新的信息和趋势,避免模型知识老化。

提高准确性:借助外部知识的补充,显著减少生成内容中的错误信息和 “幻觉” 现象,提供更可靠的答案和文本。

增强领域适应性:可针对不同的专业领域构建特定的知识库,使模型在各个领域都能表现出良好的性能,而无需大规模重新训练模型。

(二)挑战

知识库构建与维护:需要构建高质量、大规模且不断更新的知识库,这涉及到数据收集、整理、标注以及版权等多方面的问题,成本较高且具有一定难度。

检索效率与精度平衡:在大规模知识库中进行快速检索并确保检索结果的高精度是一个技术难题,需要优化索引算法、相似度计算方法等。

模型融合复杂性:将检索到的信息与生成模型有效融合并非易事,需要精心设计模型架构和训练策略,以实现两者的协同工作,达到最佳性能。

未来展望:

随着技术的不断发展,检索增强生成有望在更多领域得到深入应用并取得更大突破。在未来,知识库的构建可能会更加自动化和智能化,通过机器学习算法自动挖掘、整理和更新知识。同时,检索技术将进一步提升,能够在更复杂的知识结构中实现超快速、高精度的检索。在模型融合方面,有望开发出更加高效、灵活的融合机制,使生成模型能够更好地利用检索到的信息,从而生成更加自然、准确且富有洞察力的文本。

此外,RAG 技术还可能与其他新兴技术如强化学习、多模态信息处理等相结合,拓展其应用场景和功能。例如,在智能教育领域,结合多模态信息处理的 RAG 系统可以为学生提供更加生动、直观的学习体验,通过检索并整合文本、图像、视频等多种形式的知识资源,满足不同学生的学习风格和需求。

检索增强生成作为人工智能领域的一项重要创新技术,正以其独特的优势在多个领域发挥着积极作用。尽管面临诸多挑战,但随着技术的不断演进和完善,其未来发展前景十分广阔,有望为信息处理与智能交互带来全新的变革,推动各行业向更加智能化、高效化的方向发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有梦想的程序星空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值