时间序列预测(二)—— AR模型
欢迎大家来我的个人博客网站观看原文:https://xkw168.github.io/2019/05/20/时间序列预测-二-AR模型.html
文章链接
模型原理
AR(auto-regressive)模型,亦即是自回归模型,是时间序列分析模型中最简单的两个模型其中之一(另一个是MA/Moving Average/滑动平均模型)。其原理是利用观测点前若干时刻的变量的线性组合来描述观测点后若干时刻变量的值,属于线性回归模型。AR§模型认为,任意时刻的观测值 x t x_t xt取决于前面p个时刻的观测值加上一个误差,见下式:
x t = ϕ 0 + ϕ 1 x t − 1 + ϕ 2 x t − 2 + ⋯ + ϕ p x t − p + ε t x_t = \phi_0 + \phi_1x_{t-1} + \phi_2x_{t-2} + \dots + \phi_px_{t-p} + \varepsilon_t xt=ϕ0+ϕ1xt−1+ϕ2