双频匹配(二)

前言

对于写过第一篇双频匹配的帖子,在实操的过程中,发现这个方法很多弊端,比如对于补偿线S2,他的长度是可以灵活去定义的,但是他的这个灵活性给我们带来的却不是很好,因为我们不是很好的去选择补偿线的长度,他很容易造成两个Zs1和Zs2阻抗为负,并且这种增加一个传输零点的方式,实际PA设计也并不怎么用,所以我们接着看看有没有简单的方法。

参考论文

一、2014 A Dual-Band Matching Network for Frequency-Dependent Complex Loads Suitable for Dual-Band RF Amplifiers
论文相较于上一篇,结构比较简单,至于我们是否采用第三段的耦合器结构,自己选择就行,我们不用,我们直接采用他前两段的方法就行。
在这里插入图片描述

结构分析

(一)Section A

先进行第一段传输线的阻抗和电长度求解:
在这里插入图片描述
同样,在进行补偿线设计之前,我们先求出A到B的阻抗,求出ZIN和相对应的Yin。
在这里插入图片描述

(二)Section B

求解出开路补偿线的阻抗和电长度
在这里插入图片描述

(二)Section C

这一段我们这里阐述一下 这篇论文的做法,如果不想用这种方法,可以换用任意一个实阻抗双频变换结构。
在这里插入图片描述
在这里插入图片描述

程序验证

在这里插入图片描述

一、

求解第一段Z1,theta_1
clear
clc
Ra=input(‘请输入低频下目标阻抗的实部:’);
Xa=input(‘请输入低频下目标阻抗的虚部:’);
Rb=input(‘请输入高频下目标阻抗的实部:’);
Xb=input(‘请输入高频下目标阻抗的虚部:’);
f1=input(‘请输入低频频率(单位GHz):’);
f2=input(‘请输入高频频率(单位GHz):’);
m=f2/f1;
Z3=sqrt(RaRb+XaXb+((Xa+Xb)/(Rb-Ra))
(RaXb-RbXa))
theta3=(1pi+atan(Z3(Ra-Rb)/(RaXb-RbXa)))/(m+1)
theta4=theta3*57.3
*
在这里插入图片描述
解得Z1=90.65 theta_1=41.84

二、

clear
clc
Ra=input(‘请输入低频下目标阻抗的实部:’);
Xa=input(‘请输入低频下目标阻抗的虚部:’);
Rb=input(‘请输入高频下目标阻抗的实部:’);
Xb=input(‘请输入高频下目标阻抗的虚部:’);
theta_1=input(‘输入第一段传输线的长度:’);
Z1=input(‘输入第一段传输线的阻抗:’);
f1=input(‘请输入低频频率(单位GHz:’);
f2=input(‘请输入高频频率(单位GHz:’);
m=f2/f1;
Zin_1a=Z1
((Ra+1iXa)+1iZ1tand(theta_1))/(Z1+1i(Ra+1iXa)tand(theta_1))
Zin_1b=Z1
((Rb+1i
Xb)+1iZ1tand(mtheta_1))/(Z1+1i(Rb+1i*Xb)tand(mtheta_1))
Yin_1a=1/Zin_1a
Yin_1b=1/Zin_1b
Z=1/real(Yin_1a)
*
在这里插入图片描述
在这里插入图片描述

三、

求补偿线Z2、theta2
*clear
clc
B=input(‘请输入虚部值:’);
f1=input(‘请输入低频频率(单位GHz):’);
f2=input(‘请输入高频频率(单位GHz):’);
r=f2/f1;
theta_2=pi/(1+r)57.3
Z2=tand(theta_2)/B

在这里插入图片描述
可以得到theta_2=52.68,Z2=152.50

四、

方法一

耦合器的方式
clear
clc
Zin=input(‘请输入实数值:’);
f1=input(‘请输入低频频率(单位GHz):’);
f2=input(‘请输入高频频率(单位GHz):’);
r=f2/f1;
Z0=50;
Zm=sqrt(Z0*Zin);
theta_3=pi/(1+r)57.3
Zce=Zm
tand(theta_3)
Zco=Zm/tand(theta_3)

在这里插入图片描述

方法二

采用两条相同的微带线
clear
clc
Z0=input(‘输入Zin阻抗值:’);%一般ZIN=Z0
RL=input(‘输入RL阻抗值:’);
F1=input(‘请输入低频频率(单位GHz):’);
F2=input(‘请输入高频频率(单位GHz):’);
m=F2/F1;
C=310^8;%光速
f1=F1
10^9;
f2=F210^9;%两个频率
beta1=2
pif1/C;
beta2=2
pif2/C;%传播常数
K=Z0/RL;%设置源阻抗和目标阻抗以及阻抗变换比,
L1=pi./(beta1+beta2);%两段微带的长度相等
theta1=beta1
L1180/pi
theta2=beta1
L1180/pi %两段微带的电长度,L2也用beta1来算是因为论文中是基于f1推出的结果
alpha=(tan(beta1
L1))^2;
Z1=RLsqrt((K(1-K)/(2alpha))+sqrt((K(1-K)/(2alpha))2+K3))
Z2=Z0
RL/Z1%计算两段微带线的特征阻抗

在这里插入图片描述

仿真验证

自此我们就把所有的值都算出来
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硬件老钢丝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值