最短路径问题---Bellman-Ford算法

最短路径问题—Bellman-Ford算法

(原题传送)

Bellman-Ford算法:

简称Ford(福特)算法

同样是用来计算从一个点到其他所有点的最短路径的算法,也是一种单源最短路径算法。
优点: 能够处理存在负边权的情况,但无法处理存在负权回路的情况
缺点:算法时间复杂度:O(NE),N是顶点数,E是边数。比DIJ稍慢

算法思路

一开始认为起点是白点(dis[1]=0),每一次都枚举所有的边,必然会有一些边,连接着白点和蓝点。
因此每次都能用所有的白点去修改所有的蓝点,每次循环也必然会有至少一个蓝点变成白点。
dis[v]即为s到v的最短距离,w[j]是边j的长度,且j连接u、v。
在这里插入图片描述
负权回路:

虽然Bellman-Ford算法可以求出存在负边权情况下的最短路径,却无法解决存在负权回路的情况。
在这里插入图片描述
在有负权回路的情况下,可以绕这条负权回路走无数圈,最终达到无穷小。
Bellman-Ford算法可以在有负权回路的情况下输出错误提示:
如果在Ford算法的两重循环完成后,还是存在某条边使得:dis[u]+w<dis[v],则存在负权回路


题目代码

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int x[110],y[110],n,m,s,t,l,r;
bool g;
double a[6000],mn[110];
struct haha{
	int u;
	int v;
}c[6000];
void in()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>x[i]>>y[i];
	}cin>>m;
	memset(mn,0x7f7f7f7f,sizeof(mn));
	for(int i=1;i<=m;i++)
	{
		cin>>l>>r;
		c[i].u=l;c[i].v=r;
		a[i]=sqrt(abs(x[l]-x[r])*abs(x[l]-x[r])+abs(y[l]-y[r])*abs(y[l]-y[r]));
	}cin>>s>>t;
}
void ford()
{
	mn[s]=0;
	for(int i=1;i<n;i++)
	{
		g=0;
		for(int j=1;j<=m;j++)
		{
			int u=c[j].u,v=c[j].v;
			if(mn[u]+a[j]<mn[v])
			{
				g=1;
				mn[v]=mn[u]+a[j];
			}if(mn[v]+a[j]<mn[u])
			{
				g=1;
				mn[u]=mn[v]+a[j];
			}
		}if(!g){
			break;
		}
	}
}
int main()
{
	in();
	ford();
	printf("%0.02lf",mn[t]);
}

(原题及其他算法)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值