最短路径问题—Bellman-Ford算法
Bellman-Ford算法:
简称Ford(福特)算法
-
同样是用来计算从一个点到其他所有点的最短路径的算法,也是一种单源最短路径算法。
- 优点: 能够处理存在负边权的情况,但无法处理存在负权回路的情况
- 缺点:算法时间复杂度:O(NE),N是顶点数,E是边数。比DIJ稍慢
算法思路
一开始认为起点是白点(dis[1]=0),每一次都枚举所有的边,必然会有一些边,连接着白点和蓝点。
因此每次都能用所有的白点去修改所有的蓝点,每次循环也必然会有至少一个蓝点变成白点。
dis[v]即为s到v的最短距离,w[j]是边j的长度,且j连接u、v。
负权回路:
虽然Bellman-Ford算法可以求出存在负边权情况下的最短路径,却无法解决存在负权回路的情况。
在有负权回路的情况下,可以绕这条负权回路走无数圈,最终达到无穷小。
Bellman-Ford算法可以在有负权回路的情况下输出错误提示:
如果在Ford算法的两重循环完成后,还是存在某条边使得:dis[u]+w<dis[v],则存在负权回路
题目代码
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int x[110],y[110],n,m,s,t,l,r;
bool g;
double a[6000],mn[110];
struct haha{
int u;
int v;
}c[6000];
void in()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>x[i]>>y[i];
}cin>>m;
memset(mn,0x7f7f7f7f,sizeof(mn));
for(int i=1;i<=m;i++)
{
cin>>l>>r;
c[i].u=l;c[i].v=r;
a[i]=sqrt(abs(x[l]-x[r])*abs(x[l]-x[r])+abs(y[l]-y[r])*abs(y[l]-y[r]));
}cin>>s>>t;
}
void ford()
{
mn[s]=0;
for(int i=1;i<n;i++)
{
g=0;
for(int j=1;j<=m;j++)
{
int u=c[j].u,v=c[j].v;
if(mn[u]+a[j]<mn[v])
{
g=1;
mn[v]=mn[u]+a[j];
}if(mn[v]+a[j]<mn[u])
{
g=1;
mn[u]=mn[v]+a[j];
}
}if(!g){
break;
}
}
}
int main()
{
in();
ford();
printf("%0.02lf",mn[t]);
}