DB2存储过程的事务控制以及错误处理。

文章主要内容是:如何去控制存储过程中,出错了该如何去控制整个事务,以保证数据的完整性,以及和你的预期相吻合。(由于本人用DB2的时间不长,文中有什么不对的地方,请大家指点迷津。谢谢)

1:先准备一下测试的环境:表TAA和表TBB:

CREATE TABLE TBB
 (ID  INTEGER         NOT NULL  GENERATED BY DEFAULT
    AS IDENTITY (START WITH 1, INCREMENT BY 1, CACHE 20, MINVALUE 1, MAXVALUE 2147483647, NO CYCLE, NO ORDER),
  C1  VARCHAR(128)    NOT NULL
 )
  DATA CAPTURE NONE
  IN USERSPACE1;

ALTER TABLE TBB
  LOCKSIZE ROW
  APPEND OFF
  NOT VOLATILE;

CREATE TABLE TAA
 (ID  INTEGER         NOT NULL  GENERATED BY DEFAULT
    AS IDENTITY (START WITH 1, INCREMENT BY 1, CACHE 20, MINVALUE 1, MAXVALUE 2147483647, NO CYCLE, NO ORDER),
  C1  VARCHAR(128)    NOT NULL
 )
  DATA CAPTURE NONE
  IN USERSPACE1;

ALTER TABLE TAA
  LOCKSIZE ROW
  APPEND OFF
  NOT VOLATILE;

错误产生原因:不能把null值插入c1字段。

2:下面来创建测试的存储过程,一般情况下,没用过存储过程的人都会这样写:

CREATE PROCEDURE TEST_ZHAOGW ( ) 
  BEGIN
    INSERT INTO TAA (C1) VALUES ('AAAAAAA');
    INSERT INTO TBB (C1) VALUES (null);
end;

其结果是:控制台提示出错信息,并且TAA表有一条'AAAAAAA'的记录。而TBB表是空的。

很多人都认为存储过程会自动处理,在存储过程中,它如果出错了,会自动帮你回滚存储过程中所执行的事务。来看下下面一段话:

  SQL procedure body 是存储过程的主体。其核心是一个复合语句。复合语句由关键词 BEGIN 和 END 包围。这些语句可以是 ATOMIC 或 NOT ATOMIC 的。默认情况下,它们是 NOT ATOMIC 的。SQL Procedures 要求复合语句中的声明和可执行语句符合特定的顺序。

3:上面的一段话就很好解析为何刚才的存储过程执行的结果了。我们就根据这段话,修改一下存储过程:

CREATE PROCEDURE TEST_ZHAOGW ( ) 
  BEGIN
P1: BEGIN ATOMIC
    INSERT INTO TAA (C1) VALUES ('AAAAAAA');
    INSERT INTO TBB (C1) VALUES (null);
END P1;
end;

这里的P1其实可以不要的,如开头的那行可以是“BEGIN ATOMIC”后面的那行可以是“END;”。如果我没理解错,这个P1应该是这个复合语句的名称吧。 

其结果是:控制台提示出错信息,并且TAA和TBB表是空的。(事务是整个复合语句块回滚了)。

4:下面,大家来看一下,存储过程中定义错误的处理方式:

CREATE PROCEDURE TEST_ZHAOGW ( ) 
  BEGIN
DECLARE   CONTINUE    HANDLER   FOR SQLEXCEPTION
P1: BEGIN ATOMIC
    INSERT INTO TAA (C1) VALUES ('AAAAAAA');
    INSERT INTO TBB (C1) VALUES (null);
    INSERT INTO TAA (C1) VALUES ('bbbbbbbbb');
END P1;
end;

从字面上去理解是:出错继续。

其结果是:控制台提示执行成功。但TAA表和TBB表都没有插入数据。

5:把BEGIN ATOMIC去掉看看什么结果(错误定义的处理方式):

CREATE PROCEDURE TEST_ZHAOGW ( ) 
  BEGIN
DECLARE   CONTINUE    HANDLER   FOR SQLEXCEPTION

    INSERT INTO TAA (C1) VALUES ('AAAAAAA');
    INSERT INTO TBB (C1) VALUES (null);
    INSERT INTO TAA (C1) VALUES ('bbbbbbbbb');

end;

其结果是:控制台提示执行成功。但TAA表插入了'AAAAAAA',TBB表插入了'bbbbbbbbb'

我想这个设置,是用在一个存储过程中,后面的业务与前面的业务没有任何关联的,大家的操作都是相互独立的时候用到的,如设置的定时修复数据的存储过程。

复合语句:我的理解是:复合语句里面(begin 和end 之间)的代码看成是一个sql语句。因此就有了:

CREATE PROCEDURE TEST_ZHAOGW ( ) 
  BEGIN
    INSERT INTO TAA (C1) VALUES ('AAAAAAA');
P1:BEGIN ATOMIC
    INSERT INTO TAA (C1) VALUES ('bbbbbbbbb');
    INSERT INTO TBB (C1) VALUES (null);
end P1;
end;





其结果是:控制台提示出错信息,并且TAA表有一条'AAAAAAA'的记录。而TBB表是空的。它只回滚了复合语句块里面的

操作,外面的整个存储过程的语句块还是默认的NOT ATOMIC来的。大家还有什么疑问可以自己继续测试下,有什么特殊的发现,可以分享一下。

下面提供一些参考资料,以便大家参考使用:

http://doc.chinaunix.net/db2/200812/207691.shtml

http://weiruan85.javaeye.com/blog/312478

原创作品出自努力偷懒,转载请说明文章出处http://blog.csdn.net/kfarvid或 http://www.cnblogs.com/kfarvid/

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
⼤数据实践之数据建模 随着DT时代互联⽹、智能设备及其他信息技术的发展,数据爆发式增长,如何将这些数据进⾏有序、有结构地分类组织和存储是我们⾯临的⼀个挑战。 为什么需要数据建模 如果把数据看作图书馆⾥的书,我们希望看到它们在书架上分门别类地放置;如果把数据看作城市的建筑,我们希望城市规划布局合理;如果把数据看作电脑⽂ 件和⽂件夹,我们希望按照⾃⼰的习惯有很好的⽂件夹组织⽅式,⽽不是糟糕混乱的桌⾯,经常为找⼀个⽂件⽽不知所措。 数据模型就是数据组织和存储⽅法,它强调从业务、数据存取和使⽤⾓度合理存储数据。Linux的创始⼈Torvalds有⼀段关于"什么才是优秀程序员"的 话:"烂程序员关⼼的是代码,好程序员关⼼的是数据结构和它们之间的关系",其阐述了数据模型的重要性。有了适合业务和基础数据存储环境的模型,那么 ⼤数据就能获得以下好处。 性能:良好的数据模型能帮助我们快速查询所需要的数据,减少数据的I/O吞吐。 成本:良好的数据模型能极⼤地减少不必要的数据冗余,也能实现计算结果复⽤,极⼤地降低⼤数据系统中的存储和计算成本。 效率:良好的数据模型能极⼤地改善⽤户使⽤数据的体验,提⾼使⽤数据的效率。 质量:良好的数据模型能改善数据统计⼝径的不⼀致性,减少数据计算错误的可能性。 因此,⽏庸置疑,⼤数据系统需要数据模型⽅法来帮助更好地组织和存储数据,以便在性能、成本、效率和质量之间取得最佳平衡。 关系数据库系统和数据仓库 E .F .Codd是关系数据库的⿐祖,他⾸次提出了数据库系统的关系模型,开创了数据库关系⽅法和关系数据理论的研究。随着⼀⼤批⼤型关系数据库商业软件 (如Oracle、Informix、DB2等)的兴起,现代企业信息系统⼏乎都使⽤关系数据库来存储、加⼯和处理数据。数据仓库系统也不例外,⼤量的数据仓库系统 依托强⼤的关系数据库能⼒存储处理数据,其采⽤的数据模型⽅法也是基于关系数据库理论的。虽然近年来⼤数据的存储和计算基础设施在分布式⽅⾯有了飞 速的发展,NoSQL技术也曾流⾏⼀时,但是不管是Hadoop、Spark还是阿⾥巴巴集团的MaxCompute系统,仍然在⼤规模使⽤SQL进⾏数据的加⼯和处理, 仍然在⽤Table存储数据,仍然在使⽤关系理论描述数据之间的关系,只是在⼤数据领域,基于其数据存取的特点在关系数据模型的范式上有了不同的选择⽽ 已。关于范式的详细说明和定义,以及其他⼀些关系数据库的理论是⼤数据领域建模的基础,有兴趣的读者可以参考相关的经典数据库理论书籍,如《数据库系 统概念》。 从OLTP和OLAP系统的区别看模型⽅法论的选择 OLTP系统通常⾯向的主要数据操作是随机读写,主要采⽤满⾜3NF的实体关系模型存储数据,从⽽在事务处理中解决数据的冗余和⼀致性问题;⽽OLAP系统 ⾯向的主要数据操作是批量读写,事务处理中的⼀致性不是OLAP所关注的,其主要关注数据的整合,以及在⼀次性的复杂⼤数据查询和处理中的性能,因此它 需要采⽤⼀些不同的数据建模⽅法。 典型的数据仓库建模⽅法论 ER模型 数据仓库之⽗Bill Inmon提出的建模⽅法是从全企业的⾼度设计⼀个3NF模型,⽤实体关系(Entity Relationship,ER)模型描述企业业务,在范式理论上符 合3NF。数据仓库中的3NF与OLTP系统中的3NF的区别在于,它是站在企业⾓度⾯向主题的抽象,⽽不是针对某个具体业务流程的实体对象关系的抽象。其具 有以下⼏个特点: 需要全⾯了解企业业务和数据。 实施周期⾮常长。 对建模⼈员的能⼒要求⾮常⾼。 采⽤ER模型建设数据仓库模型的出发点是整合数据,将各个系统中的数据以整个企业⾓度按主题进⾏相似性组合和合并,并进⾏⼀致性处理,为数据分析决策 服务,但是并不能直接⽤于分析决策。 其建模步骤分为三个阶段。 ⾼层模型:⼀个⾼度抽象的模型,描述主要的主题以及主题间的关系,⽤于描述企业的业务总体概况。 中层模型:在⾼层模型的基础上,细化主题的数据项。 物理模型(也叫底层模型):在中层模型的基础上,考虑物理存储,同时基于性能和平台特点进⾏物理属性的设计,也可能做⼀些表的合并、分区的设计等。 ER模型在实践中最典型的代表是Teradata公司基于⾦融业务发布的FS-LDM(Financial Services Logical Data Model),它通过对⾦融业务的⾼度抽象和 总结,将⾦融业务划分为10⼤主题,并以设计⾯向⾦融仓库模型的核⼼为基础,企业基于此模型做适当调整和扩展就能快速落地实施。 维度模型 维度模型是数据仓库领域的Ralph Kimball⼤师所倡导的,他的The Data Warehouse Toolkit-The Complete Guide to Dimensional Modeling是数据仓 库⼯

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力偷懒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值