BSP编程模型(以NMF为例,试验基于消息传递的模型BSP过程)

对于需要迭代计算的算法,MapReduce显然不可用,迭代n次的IO量太大,而基于消息的传递模型,BSP和MPI的优势就出来了。BSP的编程模型,试验过了,确实容易入门,只要将求解问题(例如,优化问题、图的最短路径问题等等)抽象成图模型(顶点Vertex、边Edge)后,再通过消息Message,来不断迭代求解即可。拿前面有篇文章,NMF的矩阵分解这个优化问题,来实验:

1)NMF的矩阵分解基本思想:用分解后的两个矩阵P、Q乘积,来逼近原始矩阵R,越逼近越好。这里,采用L2正则避免过拟合。



2)选定优化方法,将问题抽象成图模型,采用BSP编程模型求解。这里选用批量梯度下降,将待求解问题抽象成顶点、边,举例如下,设用户数m,item数n,k是分解后的m的维数,ks是原始稀疏矩阵的非空元素的个数。则抽象后的节点个数m+n,边数ks。其中,r_ij的值是存储到图的边上。


3)上面的图模型抽象好后,用批量梯度下降来迭代求解这个最优化问题。例如,求p矩阵中每个元素值如下公式,每次迭代更新时就用下面第二个公式。求解q类似,公式略。


4)选定步长0.002试验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值