OpenCV.最大值滤波与最小值滤波

最值滤波

采用统计学方式进行kernal计算不仅有中值滤波,还有最大值与最小值滤波。顾名思义,最值滤波就是取kernal排序后得最大值或最小值来取代中心像素作为输出。不过在OpenCV中并无max或min滤波函数,而是以形态学操作dilate(扩张)与erode(侵蚀)调用而来。下面是其声明:

dilate(src, dst, kernal);

erode(src, dst, kernal);

扩张各参数解释:

  • src
    表示此操作的源(输入图像)的Mat对象。

  • dst
    表示此操作的目标(输出图像)的Mat对象。

  • kernal
    表示kerna对象,可以为任意形状。

侵蚀各参数解释

  • src
    表示此操作的源(输入图像)的Mat对象。

  • dst
    表示此操作的目标(输出图像)的Mat对象。

  • kernal
    表示kerna对象,可以为任意形状。

其中kernal对象得获取使用如下代码(获取3x3尺寸得kernal对象):

Mat kernal = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(3,3));

Java代码(JavaFX Controller层)

public class Controller{

    @FXML private Text fxText;
    @FXML private ImageView imageView;

    @FXML public void handleButtonEvent(ActionEvent actionEvent) throws IOException {

        Node source = (Node) actionEvent.getSource();
        Window theStage = source.getScene().getWindow();
        FileChooser fileChooser = new FileChooser();
        FileChooser.ExtensionFilter extFilter = new FileChooser.ExtensionFilter("PNG files (*.png)", "*.png");
        fileChooser.getExtensionFilters().add(extFilter);
        fileChooser.getExtensionFilters().add(new FileChooser.ExtensionFilter("JPG Files(*.jpg)", "*.jpg"));
        File file = fileChooser.showOpenDialog(theStage);

        runInSubThread(file.getPath());

    }

    private void runInSubThread(String filePath){
        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    WritableImage writableImage = filterOfMax(filePath);

                    Platform.runLater(new Runnable() {
                        @Override
                        public void run() {
                            imageView.setImage(writableImage);
                        }
                    });

                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }

    private WritableImage filterOfMax(String filePath) throws IOException {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

        Mat src = Imgcodecs.imread(filePath);
        Mat dst = new Mat();
        Mat kernal = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(3,3));

        Imgproc.dilate(src, dst, kernal);

        MatOfByte matOfByte = new MatOfByte();
        Imgcodecs.imencode(".jpg", dst, matOfByte);

        byte[] bytes = matOfByte.toArray();
        InputStream in = new ByteArrayInputStream(bytes);
        BufferedImage bufImage = ImageIO.read(in);

        WritableImage writableImage = SwingFXUtils.toFXImage(bufImage, null);

        return writableImage;
    }

}

说明:本例以最大值滤波函数为例,读者可更改使用最小值函数来完成最小值滤波。

运行图
在这里插入图片描述
图1 - 最大值滤波

在这里插入图片描述

图2 - 最小值滤波

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值