目录
召回率、准确率
http://www.6aiq.com/article/1549986548173
召回率:预测正确的正样本占总样本中正样本的百分比
精确率:预测成为正样本中预测正确的 / 预测成为正样本的个数
准确率:
准确率 =(TP+TN)/(TP+TN+FP+FN)
mAP
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
知乎上的一篇:
https://blog.csdn.net/qq_36401512/article/details/87916482
APs,APm,APl:
https://blog.csdn.net/qq_36401512/article/details/88248605
coco数据集评价指标
https://www.jianshu.com/p/d7a06a720a2b
1、AP
假设我们准备了一个数据集,只有五个苹果,其他是非苹果,指定IoU≥0.5是预测正确,根据召回率和准确率,我们可以绘制一条曲线。
平均精度(AP)的一般定义是在上面的曲线下找到面积。
精度和召回总是在0和1之间。因此,AP也在0和1之间。在为对象检测计算AP之前,我们通常首先平滑锯齿形图案。
在图形上,在每个召回级别,我们将每个精度值替换为该召回级别右侧的最大精度值。
因此橙色线转换为绿线,曲线将单调减少而不是锯齿形图案。对于排名的微小变化,计算出的AP值将不那么可疑。在数学上,我们用召回的精度值ȓ替换任何召回的最大精度≥ȓ。
1.1、插值AP
在Pascal VOC2008中,计算11点插值AP的平均值。
首先,我们将召回值从0分为1.0分为11分 - 0,0.1,0.2,......,0.9和1.0。接下来,我们计算这11个召回值的最大精度值的平均值。
2、mAP
https://www.cnblogs.com/klitech/p/9242700.html
目标检测中衡量识别精度的指标是mAP(mean average precision)。多个类别物体检测中,每一个类别都可以根据recall和precision绘制一条曲线,AP就是该曲线下的面积,mAP是多个类别AP的平均值
focal loss:
https://blog.csdn.net/LeeWanzhi/article/details/80069592
top-1和top-5准确率
ImageNet有大概1000个分类,而模型预测某张图片时,会给出1000个按概率从高到低的类别排名,
所谓的Top-1 Accuracy是指排名第一的类别与实际结果相符的准确率,
而Top-5 Accuracy是指排名前五的类别包含实际结果的准确率。
IOU
https://blog.csdn.net/eddy_zheng/article/details/52126641