mAP等基本概念

目录

召回率、准确率

mAP

top-1和top-5准确率

IOU


召回率、准确率

http://www.6aiq.com/article/1549986548173

召回率:预测正确的正样本占总样本中正样本的百分比

精确率:预测成为正样本中预测正确的 / 预测成为正样本的个数

准确率:

准确率 =(TP+TN)/(TP+TN+FP+FN)

mAP

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173

 

知乎上的一篇:

https://blog.csdn.net/qq_36401512/article/details/87916482

APs,APm,APl:

https://blog.csdn.net/qq_36401512/article/details/88248605

 

coco数据集评价指标

https://www.jianshu.com/p/d7a06a720a2b

 

1、AP

假设我们准备了一个数据集,只有五个苹果,其他是非苹果,指定IoU≥0.5是预测正确,根据召回率和准确率,我们可以绘制一条曲线。

平均精度(AP)的一般定义是在上面的曲线下找到面积。

精度和召回总是在0和1之间。因此,AP也在0和1之间。在为对象检测计算AP之前,我们通常首先平滑锯齿形图案。

在图形上,在每个召回级别,我们将每个精度值替换为该召回级别右侧的最大精度值。

因此橙色线转换为绿线,曲线将单调减少而不是锯齿形图案。对于排名的微小变化,计算出的AP值将不那么可疑。在数学上,我们用召回的精度值ȓ替换任何召回的最大精度≥ȓ

1.1、插值AP

在Pascal VOC2008中,计算11点插值AP的平均值。

首先,我们将召回值从0分为1.0分为11分 - 0,0.1,0.2,......,0.9和1.0。接下来,我们计算这11个召回值的最大精度值的平均值。

 

2、mAP

https://www.cnblogs.com/klitech/p/9242700.html

目标检测中衡量识别精度的指标是mAP(mean average precision)。多个类别物体检测中,每一个类别都可以根据recall和precision绘制一条曲线,AP就是该曲线下的面积,mAP是多个类别AP的平均值

focal loss:

https://blog.csdn.net/LeeWanzhi/article/details/80069592

 

top-1和top-5准确率

ImageNet有大概1000个分类,而模型预测某张图片时,会给出1000个按概率从高到低的类别排名,

  所谓的Top-1 Accuracy是指排名第一的类别与实际结果相符的准确率,

  而Top-5 Accuracy是指排名前五的类别包含实际结果的准确率。

IOU

https://blog.csdn.net/eddy_zheng/article/details/52126641

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值