深入路径距离分析(一)

本文介绍了路径距离分析,对比了欧式距离和成本距离,并通过实例解释了成本距离在考虑障碍时的优势。路径距离分析同时考虑水平和垂直成本,适用于扩散建模、流向运动和最低成本路径分析。文章以开车为例,探讨了水平和垂直影响因子在路径选择中的作用,并预告了后续将讨论这些系数对路径距离的具体影响。
摘要由CSDN通过智能技术生成

        写这篇之前,整理过空间分析中的距离分析工具箱,今天继续深入的说说路径距离分析

        开始路径距离分析之前,先回忆下最基本的欧式距离分析成本距离分析。欧氏距离分析遵循的就是我们小学都知道的“两点之间直线最短”的原则,两点之间的最短路径就是两点之间的线段的距离。但是实际情况并不是很完美,有时我们无法完全沿直线前往某个位置,例如遇到河流、陡坡、悬崖等障碍。这时,我们就应该考虑使用成本距离工具获得更现实的结果。

       如下图,举个简单的例子说明成本距离分析和欧式距离分析。按照欧式距离在问号位置求得的应该是绿色的路径,表示最近源,但是考虑到成本,黄色的曲线确是成本最低的最优路径。并且“曲线救国”比盲目直行,成本更低。


      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值