Tensorflow2中tf.image.resize函数的bug,以及解决办法

解决办法:使用tf.compat.v1.image.resize_bilinear替换

这个bug之前在这里有人提到过,自己之前也遇到过,但是是用补救的方法解决的,这次是在准备训练EAST文本检测网络时又遇到了,记录一下解决过程。

关于EAST, github有tf1-keras低版本的已训练好的h5权重,为了能在win系统的tf2上快乐高效地训练,我按照keras2.3.1的resnet50层命名风格重建了EAST网络,这样在tf2(keras=2.4.0)上就能完美加载tf1的权重了。
在tf1中,EAST的一个resize_bilinear层是用的tf.image.resizetf.image.resize_bilinear函数来做插值的,两个函数在使用中没有任何问题。而在tf2中,只提供了tf.image.resize函数,但网络加载权重后的预测结果有偏移
明显在TF2中有偏差
将resize_bilinear层中的tf.image.resize替换为tf.compat.v1.image.resize_bilinear输出就正常了
诶,这次还好发现及时。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值