spark cogroup操作

private static void cogroup() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("cogroup")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        // 模拟集合
        List<Tuple2<Integer, String>> studentList = Arrays.asList(
                new Tuple2<Integer, String>(1, "leo"),
                new Tuple2<Integer, String>(2, "jack"),
                new Tuple2<Integer, String>(3, "tom"));
        
        List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
                new Tuple2<Integer, Integer>(1, 100),
                new Tuple2<Integer, Integer>(2, 90),
                new Tuple2<Integer, Integer>(3, 60),
                new Tuple2<Integer, Integer>(1, 70),
                new Tuple2<Integer, Integer>(2, 80),
                new Tuple2<Integer, Integer>(3, 50));
        
        // 并行化两个RDD
        JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
        JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
        
        // cogroup与join不同
        // 相当于是,一个key join上的所有value,都给放到一个Iterable里面去了
        // cogroup,不太好讲解,希望大家通过动手编写我们的案例,仔细体会其中的奥妙
        JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> studentScores =
                students.cogroup(scores);
        
        // 打印studnetScores RDD
        studentScores.foreach(
                
                new VoidFunction<Tuple2<Integer,Tuple2<Iterable<String>,Iterable<Integer>>>>() {

                    private static final long serialVersionUID = 1L;
        
                    @Override
                    public void call(
                            Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> t)
                            throws Exception {
                        System.out.println("student id: " + t._1);  
                        System.out.println("student name: " + t._2._1);  
                        System.out.println("student score: " + t._2._2);
                        System.out.println("===============================");   
                    }
                    
                });
        
        // 关闭JavaSparkContext
        sc.close();


运行结果:

student id: 1
student name: [leo]
student score: [100, 70]
===============================
student id: 3
student name: [tom]
student score: [60, 50]
===============================
student id: 2
student name: [jack]
student score: [90, 80]
===============================

发布了108 篇原创文章 · 获赞 23 · 访问量 36万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览