.NET Core 人工智能系列-.NET Interactive环境介绍

.NET Interactive是.NET团队为数据科学打造的交互式编程工具,类似Jupyter Notebook的.NET插件。它支持在各种环境中,如VS Code和Jupyter Notebook,使用C#和F#进行数据探索和机器学习。本文介绍了Jupyter Notebook的优势,如数据分析、代码实时交互和多语言支持,并详细阐述了如何安装和使用.NET Interactive,包括在Jupyter Notebook中运行C#代码的示例。
摘要由CSDN通过智能技术生成

      在进入.NET Core 的人工智能应用开始前,我们先把环境搭建好,为以后的学习提供一个便利。

      作为一个.NET 程序员,或者其他编程语言的程序员,相信对IDE的依赖必不可少,如Visual Studio/Visual StudioCode , IntelliJ , Eclipse等。但是对于一个从事数据科学的人来说,和传统的编程相比又有所不同,他们更喜欢通过Notebook作为主要的数据科学工作的工具。通过概述的学习,你可能知道这一个重要的知识点,但具体还是要和大家介绍以下。环境配置,我们也从.NET Interactive开始。

为何要用Jupyter Notebook?

 

 

       我们先看看Jupyter Notebook 是什么,。Jupyter 是一种免费的、开源的、交互式网络工具,称为计算笔记本,研究人员可以使用它在单个文档中组合软件代码、计算输出、解释性文本和多媒体资源。 Jupyter Notebook有以下特性

数据分析:Jupyter Notebook允许用户在线查看代码的结果,而无需依赖代码的其他部分。 在笔记本中,可以随时检查代码的每个单元格以绘制输出。 因此,与 传统IDE 不同,Jupyter Notebook有助于在线打印输出,这对于探索性数据分析 (EDA) 过程非常有用。

每个cell都有缓存:传统开发工具要保留每行的执行状态都比较难,但 Jupyter Notebook可以缓存每行的结果——无论是训练 ML 模型的本地代码还是从远程服务下载的代码。

和编程语言无关:支持多种语言,多种格式。

数据可视化:作为一个组件, Jupyter Notebook支持可视化并包括渲染一些数据集,如图形和图表,这些数据集是在 Matplotlib、Plotly 或 Bokeh 等模块的帮助下从代码生成的。 Jupyter 允许用户叙述可视化,同时共享代码和数据集,使其他人能够进行交互式更改。

与代码的实时交互:Jupyter Notebook 使用“ipywidgets”包,它提供了用于探索代码和数据交互性的标准用户界面。因此代码可以由用户编辑࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值