数据治理的本质与实践
近三年,随着阿里数据中台战略的提出,以及各种数据应用场景的成功落地,企业和政府对自身数据资产的价值也前所未有的重视起来。但是,数据资产的价值发掘依赖于有序、完整和高质量的数据,数据治理则是保障数据质量和实现数据价值的基础,它包含一整套构建核心数据资产的方法论、规章制度和实施工具。
什么是数据治理
我们认为,数据治理是指从使用零散数据变为使用统一数据、从具有很少或没有组织流程到企业范围内的综合数据管控、从数据混乱状况到数据井井有条的一个过程。
所以,数据治理强调的是一个过程,是一个从混乱到有序的过程。从范围来讲,数据治理涵盖了从前端业务系统、后端业务数据库再到业务终端的数据分析,从源头到终端再回到源头,形成的一个闭环负反馈系统。从目的来讲,数据治理就是要对数据的获取、处理和使用进行监督管理。
具体一点来讲,数据治理就是以服务组织战略目标为基本原则,通过组织成员的协同努力,流程制度的制定,以及数据资产的梳理、采集清洗、结构化存储、可视化管理和多维度分析,实现数据资产价值获取、业务模式创新和经营风险控制的过程。
所以,数据治理是一个过程,是逐步实现数据价值的过程,也正是因为这个过程特性,我们认为,数据治理是一个持续性的服务,而不是一个有着明确范围的一锤子买卖。
为什么要实施数据治理
当前,企业变革已经成为企业适应剧烈变化的市场环境、实现长期发展的必经之路。然而,过去为组织带来工作效率提升的烟囱式的孤岛式的业务系统已经成为组织变革重组的阻力,这也是从数据层面打
本文探讨了数据治理的本质,强调它是从混乱到有序的过程,旨在提升数据质量和实现价值。文章指出,数据治理涉及从数据源到终端的全过程管理,目标是支持组织战略,解决跨部门协作难题。此外,文章分析了数据治理面临的问题,如沟通协调、投资决策和持续性工作推进,并提出了数据治理的内容包括顶层设计、环境建设、治理域和治理过程。最后,讨论了数据治理所需工具,如数据资源梳理、ETL、元数据管理和商业智能等。
订阅专栏 解锁全文
9万+

被折叠的 条评论
为什么被折叠?



