金融学习之八——ARCH和GARCH模型应用

对衍生产品定价和风险管理中,常常需要对衍生产品的波动率进行预测,这就需要使用到波动率模型。常见的波动率模型有两个,一个是自回归条件异方差模型ARCH,另一个是广义自回归条件异方差模型GARCH。这两个模型的数学公式有点多,但如果只是跑代码的话就没那么麻烦,本次仅介绍这两个模型在python中的应用。
我们希望根据2016-2018年的沪深300指数的涨跌幅构建波动率模型,步骤如下:
(1)利用Tushare获取沪深300指数的数据
因不知道沪深300指数的代码,所以先做了个查询

import tushare as ts
ts.set_token('b497571a3ddd7dde8ebe28b372879594b2f8356c918ad80dae01605b')
pro=ts.pro_api()
index=pro.index_basic()
index

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值