概率论与数理统计——概率的公理化定义与定理

概率的公理化

概率的公理化来源于频率的性质,在此不做详细讲解,仅罗列如下:

设试验E的样本空间eq?%5COmega,事件域为eq?%5Cboldsymbol%7B%5Cmathfrak%7BT%7D%7D,P为定义在事件域eq?%5Cboldsymbol%7B%5Cmathfrak%7BT%7D%7D上的一维实函数

eq?P%3A%20%5Cboldsymbol%7B%5Cmathfrak%7BT%7D%7D%5Crightarrow%20%5Cmathbb%7BR%7D%5E%7B1%7D%3B%20A%5Crightarrow%20P%28A%29

该一维实函数满足下述条件:

非负性:P(A) \geq 0

规范性:对必然事件\Omega_{0},有P(A)\leq 1

可列可加性:若A_{1}, A_{2},\cdots,A_{n}互不相容,

P(\cup_{k = 1}^{\inf}A_{k})=\Sigma_{k = 1}^{\inf}P(A_{k})

【练】证明:P(\phi )=0

【证明】令A_{n}=\phi(n=1,2,\cdots)\bigcup _{n=1}^{\inf}A_{n}=\phi

A_{i}A_{j}=\phi\cap\phi=\phi,i\neq j,i,j=1,2,\cdots
由可列可加性:P(\phi)=P(\bigcup_{n=1}^{\infty }A_{n})=\sum _{n=1}^{\infty}P(A_{n})=\sum_{n=1}^{\infty}P(\phi)
\therefore P(\phi)=0

逆事件的概率:P(\bar{A})=1-P(A)

加法公式:P(A\cup B)=P(A)+P(B)-P(A\cap B)

全错排列问题

【例】有n封信件与信封,现将信件随机装入信封,求信封中完全没有正确信件的概率

【解】

设:A_{0}={没有一封信在正确的信封}

A_{1}={第1封信放入第1个信封}

\vdots

A_{i}={第i 封信放入第i 个信封}

\therefore P(A_{0})=P(\bar{A_{1}} \bar{A_{2}} \cdots \bar{A_{n}})

P(\bar{A})=P(\bigcup_{k=1}^{n}A_{k})

=P(A_{1})+P(A_{2})+\cdots+P(A_{n})-P(A_{1}A_{2})-\cdots+(-1)^{m-1}\sum_{1\leq k_{1}\leq \cdots \leq k_{m}\leq n}^{}P(A_{k_{1}}A_{k_{2}}\cdots A_{k_{m}})+\cdots +(-1)^{n-1}P(\bigcap _{k=1}^{n}A_{k})

=C_{n}^{1}\frac{(n-1)!}{n!}-C_{n}^{2}\frac{(n-2)!}{n!}+\cdots +(-1)^{m-1}C_{n}^{m}\frac{(n-m)!}{n!}+\cdots +(-1)^{n}\frac{1}{n!}

=1-\frac{1}{2!}+ \frac{1}{3!}-\cdots +(-1)^{m-1}\frac{1}{m!}+\cdots+(-1)^{n-1} \frac{1}{n!}

\therefore P(A) = \frac{1}{2!} - \frac{1}{3!} + \cdots +(-1)^{n} \frac{1}{n!}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值