概率论与数理统计——古典概型(笔记自用)

古典概型与几何概型

古典概型

        应用古典概型时应该注意其应用场景:

        1)样本空间S的元素个数应有限

        2)每个元素的概率相等

        经典的古典概型模型有摸球模型、分球入箱、随机取数(抽卡)、分组分配等。古典概型的实质是直接利用空间或事件中元素数量的比例表达事件的概率。实际上大学讲的这部分的技巧性和思维强度还不如某些省份的模考(雾)

摸球模型

        摸球模型是最经典的古典概型,在此抽取过程可以衍生出放回抽取、不放回抽取,抽取结果也可以分为排列抽取、组合抽取,以组合抽取的题目最为常见。

        放回的抽取因为其每次抽取概率都是均等的,是二项分布的原型

P(A) = \binom{N}{n}p^{n}(1-p)^{N-n}

        不放回抽取则是超几何分布的原型。

P(A) = \frac{\binom{k}{n}\binom{K-k}{N-n}}{\binom{N}{K}}

放回抽取:这个比较简单,因为放回总会使得样本空间\Omega _{0}保持不变,每次抽取都是等价的

【例】袋中有a只红球,b只黑球,有放回取出n只球,其中恰好k个红球的概率?

S: n _{s} = (a+b)^{n}

A: 分析这个事件的元素数目需要考虑三个方面:抽取的红球,抽取的黑球,红球和黑球的顺序

抽取的红球:a^{k}       抽取的黑球:b^{K-k}        抽取顺序:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值