概率论与数理统计——古典概型(笔记自用)

古典概型与几何概型

古典概型

        应用古典概型时应该注意其应用场景:

        1)样本空间S的元素个数应有限

        2)每个元素的概率相等

        经典的古典概型模型有摸球模型、分球入箱、随机取数(抽卡)、分组分配等。古典概型的实质是直接利用空间或事件中元素数量的比例表达事件的概率。实际上大学讲的这部分的技巧性和思维强度还不如某些省份的模考(雾)

摸球模型

        摸球模型是最经典的古典概型,在此抽取过程可以衍生出放回抽取、不放回抽取,抽取结果也可以分为排列抽取、组合抽取,以组合抽取的题目最为常见。

        放回的抽取因为其每次抽取概率都是均等的,是二项分布的原型

P(A) = \binom{N}{n}p^{n}(1-p)^{N-n}

        不放回抽取则是超几何分布的原型。

P(A) = \frac{\binom{k}{n}\binom{K-k}{N-n}}{\binom{N}{K}}

放回抽取:这个比较简单,因为放回总会使得样本空间\Omega _{0}保持不变,每次抽取都是等价的

【例】袋中有a只红球,b只黑球,有放回取出n只球,其中恰好k个红球的概率?

S: n _{s} = (a+b)^{n}

A: 分析这个事件的元素数目需要考虑三个方面:抽取的红球,抽取的黑球,红球和黑球的顺序

抽取的红球:a^{k}       抽取的黑球:b^{K-k}        抽取顺序:\binom{K}{k}

故概率为: P(A) = \binom{K}{k}\frac{a^{k}b^{K-k}}{(a+b)^{K}} = \binom{K}{k}(\frac{a}{a+b})^{k}(\frac{b}{a+b})^{K-k}

不妨设单次抽出红球概率为p,则总体概率可以表示为

P(A) = \binom{K}{k}p^{k}(1-p)^{K-k}

不放回抽取:这个比较复杂,因为每次抽取的概率情况会发生变化,所以我们倾向于有技巧的整合,分析一段操作中的样本空间元素与事件元素。

如果抽取没有顺序要求,则排列和组合的方法都是可取的
如果抽取有顺序要求,则只能应用组合的方法

【例】袋中有a只红球,b只黑球,不放回取n只球(n <= a + b),求其中恰有k(k <= a, k < n)只红球的概率

【分析】此题对抽取结果的顺序没有要求,所以排列和组合的解法都是可以接受的,我们两个方法都看一看

【法一】操作E:依次取出n个球

              样本空间S的元素个数:n_{s} = A_{a+b}^{n}

              操作A:n个位置中取k个位置,a个红球任取k个排到位置,b个红球任取n-k个排到位置

              事件的元素个数n_{A} = C_{n}^{k}A_{a}^{k}A_{b}^{n-k}

则事件的概率为:

P(A)=\frac{C_{n}^{k}A_{a}^{k}A_{b}^{n-k}}{A_{a+b}^{n}}=\frac{\frac{A_{a}^{k}}{k!}\frac{A_{b}^{n-k}}{(n-k)!}}{\frac{A_{a+b}}{n!}}

整理得:

P(A)=\frac{C_{a}^{k}C_{b}^{n-k}}{C_{a+b}^{n}}

【法二】操作E:一次性取n个球 n_{S}=C_{a+b}^{n}

              操作A:从a个红球中直接取出k个,从b个黑球中直接取出n-k个 n_{A}=C_{a}^{k}C_{b}^{n-k}

P(A)=\frac{C_{a}^{k}C_{b}^{n-k}}{C_{a+b}^{n}}

【例】一批同类型的产品共有N件,其中次品有M件。现从中任取n(n <= N-M)件,求次品恰有k件的概率

答案:P(B)=\frac{C_{M}^{k}C_{N-M}^{n-k}}{C_{N}^{n}}

分球入箱

【例】设有n个球,每个球都以同样的概率落入N个箱子(N >= n)的每一个箱子,试求下列事件的概率(设每箱装球无限,且球可辨)
(1) A_{1}: 某指定的n个箱子中各有一个球
(2)A_{2}: 任何n个箱子中各有一球

【解】
总事件E:将N个箱子中放入n个球 n_{S}=N^{n}
A_{1}: 因为球是可辨的,即n个球的排列 

n_{A_{1}}=n!

A_{2}: 首先任取n个箱子,之后在指定的箱子中放入n个球 也就是有顺序地取出n个箱子

n_{A_{2}}=A_{N}^{n}

【变例】有n个人,每个人的生日是任意一天的概率为1/365, 求这n(n <= 365)个人中至少两个人生日相同(事件A)的概率。

【解】
总事件E:将365天中放入n个人 n_{S}=365^{n}
事件A:至少两个人生日相同
事件\bar{A}:任意两个人的生日不同

P(\bar{A})=A_{365}^{n}

所以事件A的概率为

P(A)=1-P(\bar{A})=1-\frac{A_{365}^{n}}{n!}

随机取数

需要注意的是数的性质较为复杂,一个数可能既拥有A性质也拥有B性质,这会大大增加直接讨论的难度。适时使用加法原理、容斥原理进行分析拆解有助于问题的求解。

分组分配

分组分配本质上就是多次的排列组合,首先从N个里面取k0个,在从N-k0个中取k1个,直至完成。只需要按照这个顺序分析即可

【例】n双相异的鞋,随机地分成n堆,每堆2只。问事件A:“各堆都自成一双鞋”的概率。

【解】此题就是将2n只鞋子分为n堆,每堆2只,分法总数为:

n_S=C_{2n}^{2}C_{2n-2}^{s}\cdots C_{2}^{2}=\frac{(2n)!}{2!2!\cdots 2!}=\frac{(2n!)}{2^{n}}

也可以这样理解:首先进行2n的全排列,然后对每一组取消排列

对事件A:可以理解为事先将鞋子配好对,此后从这些鞋子对中随机抽取

n_{A}=n!

由此得:

P(A)=\frac{2^{n}n!}{(2n)!}

几何概型

几何概型是古典概型在更稠密的测度上的拓展,依然是落在每一个测度有限的区间内每一点概率均等。设样本空间\Omega为有限区域,样本点落入\Omega中任何区域G中的概率与区域G的测度成正比,则落入区域G的概率为 G的测度与\Omega的测度之比

可以通过建模的方法将事件抽象为几何的形式
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值