【概率论与数理统计】第1章 随机事件与概率,事件的关系及运算,概率的定义,事件的独立性

前    言

起源 概率论:十七世纪,由赌博、测量误差、航海风险、  人生寿命等研究的需要。——古典概率论

1930s,前苏联数学家科尔莫格罗夫借助测度论建 立了严格的数学基础。——概率论的公理化

数理统计:18、19世纪出现统计推断思想的萌芽, 20世纪初,英国数学家费希尔为现代数理统计学奠 基,使之成为一门独立学科。

数理统计几乎渗透到一切学科之中,有试验、数据,就有它,没有它就无法应付大量的数据和信息,已成为现代最基本的数学工具之一。

二者关系:概率论是数理统计的理论基础;数理统计是概率论的应用。

课程需要的知识 集合论   概念、运算 排列组合 微积分、二重积分

第1章  随机事件与概率

概率论——研究随机现象的统计规律性的数学分支。

1.1  随机事件

确定性现象:在一定条件下必然出现(不出现) 某种结果。

随机现象:在一定条件下重复试验或观察,可能得出多种结果,每次试验前不能肯定将出现何种结果。

确定性现象的例子:

纯水在标准大气压下加热到摄氏 100 ℃必然会沸腾。  

两个三角形边、角、边对应相等,则第三边必相等。

f(x)在x=a处间断,则在x=a处必不可导。

随机现象的例子:

抛一枚硬币,结果可能出现正面朝上,也可能出现反面朝上,事前不能肯定。

炮兵按同样射击条件(使用同一门炮、同一批炮 弹、同一角度、同一炮位等)进行多次射击,其射程可能远些,可能近些,射击前不能肯定其射程多远。

虽然随机现象在一次试验或观察中,出现什么结果是偶然的,但是在相同条件下多次观察一个随机现象,便可呈现出一定的规律性。          

如抛硬币试验,次数增多时,出现正面和反面的次数差不多;          

又如多次炮击后,可发现射程集中在某一常数a附近,偏离a较远的现象极少。            

随机现象在大量重复试验或观察中呈现出来的规律性叫作随机现象的统计规律性。

在一定条件下,对某种随机现象进行的观察、测试、实验等,记作E (简称试验)。      

随机试验 的特性:

可在相同条件下重复进行;

每次试验结果可能不止一个,并能事先明确试验的所有可能结果;

进行一次试验之前不能确定哪个结果会出现。

比如:

E1:掷骰子,观察得点数;

E2:掷骰子,观察得奇数点还是得偶数点;

E3:抛一枚硬币3次,观察正面出现次数;

E4:抛一枚硬币3次,观察各次正、反面情况;

E5:从一批灯泡中随机抽取一个,测其寿命。

样本空间

—随机试验E的所有可能结果组成的集合,记作Ω。Ω的元素( E的每个结果)称为样本点。

      如下列随机试验的样本空间分别为:

E1(掷骰子,观察得点数)--- Ω1={1,2,3,4,5,6 }

E2(掷骰子,观察得奇数点还是得偶数点)--- Ω2={奇数点,偶数点}

E3(抛一枚硬币3次,观察正面出现次数)--- Ω3={0,1,2,3 }

E4(抛一枚硬币3次,观察各次正、反面情况)---     Ω4={ HHH,HHT,HTH,THH,HTT,THT,TTH,TTT }

E5(从一批灯泡中随机抽取一个,测其寿命)--- Ω5=[0,t)

          随机事件

—随机试验E的结果,可用Ω的子集合A表示 (当试验结果对应的样本点落在A 中,称随机事件A 发生)。

单点集称为基本事件。

如E1(掷骰子,观察得点数)--- Ω1={1,2,3,4,5,6 }中 设Ai---“得i点”,Ai={i} 为基本事件(i=1,2,3,4,5,6)    

A--- “得奇数点”,A={1,3,5}    

B--- “得点数大于3”, B={4,5,6}    

在每次试验中必然发生,称为必然事件; 如Ω    

在每次试验中必然不发生,称为不可能事件; 如    “得点数小于7”为必然事件;     “得点数大于6”为不可能事件。

事件的关系及运算(即集合的关系及运算)

(1)包含关系:

A   B,指“A 发生则B必发生”

2)和事件:

A∪B,指“A 、B中至少有一个发生”

(3)积事件:

A∩B (AB),指“A 与B同时发生”

(4)差事件:

A-B={x |x ∈A 且X    B},指“A发生而B不发生”

(5)互斥事件

若A∩B=  空   ,

称A、B为互斥事件(互不相容事件)

(6)对立事件

德.摩根律

1.2  概率的定义与性质

概率的古典定义

古典概率:           

设E为等可能概型,其样本空间Ω共含有n个基本事件,其中A包含的基本事件有k件,则        

几何概率

向区域G中任投一点,假设此点落在G中任一点位置等可能,g 属于G ,则定义此点恰落在g内的概率

概率的统计定义

随机事件具有偶然性,在一次试验中可能发生,也可能不发生,我们希望对试验中某事件出现的可能性大小作一度量。    

概率—事件可能性大小的度量    

用频率的极限来定义          

 对E作n次重复试验,其中事件A出现k次,称k为事件A发生的频数,称fn(A)=    k/n       

为事件A发生的频率。

频率具有波动性,如“抛硬币”试验,将一枚硬币抛n次,正面出现的频数k,频率k/n:

概率的公理化定义

定义:设Ω为随机试验E的样本空间,A为Ω的子集(随机事件),集合函数P(A)满足:

1、非负性:对于每个事件A,有P(A) ≥0;

2、规范性:对于必然事件Ω,有P(Ω) =1;

3、可列可加性:若随机事件A1,A2,…,Ak,…两两互斥(AiAj=空  ,i≠j),则有 P(A1∪A2∪… ∪Ak∪…)=P(A1)+P(A2)+…+P(Ak)+…

则称P(A)为事件A的概率。

概率的性质:

1.3  条件概率

条件概率

引例   从一批产品中(如图)随机抽取1件,已知抽到的是第一车间的产品,求“取到的是次品”的概率。

         产品

车间

正品

次品

总计

35

5

40

50

10

60

总计

85

15

100

解:设A:任取1件,是第一车间的产品;   B :任取1件,是次品 则所求概率:P=  5/40=1/8; 因为这里 P(A)=40/100,P(AB)=5/100,

∴P=P(AB)/P(A)

、乘法定理 :设P(A)>0,则有P(AB)=P(A)P(B|A)

推广:P(ABC)=P(A)P(B|A)P(C|AB),这里P(AB)>0.

一般,P(A1A2…An)=P(A1)P(A2|A1)P(A3|A1A2)…P(An |A1A2…An-1)  

这里 n≥1, P(A1A2…An-1)>0

全概率公式:

贝叶斯公式

1.4  事件的独立性

多个事件的相互独立性:

若A1,A2,…,An(n≥2)中任意m个事件的积 事件的概率,都等于各事件概率之积,则称 事件A1,A2,…,An相互独立。

推论:(1)若事件 A1,A2,…,An相互独立,则其中 任意k(2≤k≤n)个事件也相互独立。        

(2)若A1,A2,…,An(n≥2)相互独立,则将其 中任意多个事件换成各自的对立事件,所得n 个事件仍相互独立。

第一章小结

求概率的3个法宝:

古典定义:P(A)=k/n, n为基本事件数,k为属于A的基本事件数;

加法定理: P(A∪B)=P(A)+P(B)-P(AB); 特别,A,B互斥时: P(A∪B)=P(A)+P(B)

乘法公式: P(AB)=P(A)P(B|A) ,  P(A)>0. 特别,A,B独立时: P(AB)=P(A)P(B) 重要公式:全概率公式;贝叶斯公式。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值