深度学习系列15:人群热力图的制作

1. 问题介绍

通过深度学习的方法,可以识别出区域人流的密度,如下图:
在这里插入图片描述
再通过摄像头坐标投影转换到地图上,就可以绘制人群热力图了。资料集合见:https://github.com/gjy3035/Awesome-Crowd-Counting
https://zhuanlan.zhihu.com/p/266434424
技术路线大致有3个方向:
1)行人检测,包括传统cv方法和深度学习模型方法,但是这个方法对遮挡非常敏感。
2)机器学习回归法,直接回归行人数。
3)密度图法,当前主流。密度图的制作方法:使用高斯核模拟人头,然后做一下normalization。这里有几个分类:① 固定尺寸密度图,使用同样的高斯核,不受perspective变换影响;② 透视密度图,不同位置的人头用不同的高斯核。③ KNN密度图,使用k个最近的人头决定当前人头的高斯核。
至于人数,密度图的积分就是人数。详细可参考这篇:https://www.zhihu.com/question/406153313/answer/1471711287

2. 问题背景

2.1 训练数据

《Learning from Synthetic Data for Crowd Counting in the Wild》由西北工业大学的学者提出,使用计算机图形工具创建拥挤人群数据集,并开源了他们创建的大型数据集,在此数据集上训练的算法精度获得了大幅提升,超越了之前的state-of-the-art。作者已经公开了该数据集,并开源了数据创建标注工具:https://github.com/gjy3035/GCC-CL

项目主页:https://gjy3035.github.io/GCC-CL/

论文地址:https://arxiv.org/pdf/1903.03303.pdf

其他数据集还包括:
UCF_CC_50(UCF50),Shanghai Tech Part A/B(SHT A/B),WorldExpo’10(WE),UCF-QNRF(QNRF),GCC、UCSD、MALL

2.2 模型

下面是从图片来进行分析的模型清单:
[SKT] Efficient Crowd Counting via Structured Knowledge Transfer (ACM MM(oral)) [paper][code]
[C-CNN] A Real-Time Deep Network for Crowd Counting (ICASSP) [paper]
[MobileCount] MobileCount: An Efficient Encoder-Decoder Framework for Real-Time Crowd Counting [conference paper] [journal paper] [code]
[PCC-Net] PCC Net: Perspective Crowd Counting via Spatial Convolutional Network (T-CSVT) [paper] [code]
[SRN+PS] Scale-Recursive Network with point supervision for crowd scene analysis (Neurocomputing) [paper]
[SANet] Scale Aggregation Network for Accurate and Efficient Crowd Counting (ECCV) [paper]
[ACSCP] Crowd Counting via Adversarial Cross-Scale Consistency Pursuit (CVPR) [paper] [unofficial code: PyTorch]
[CMTL] CNN-based Cascaded Multi-task Learning of High-level Prior and Density Estimation for Crowd Counting (AVSS) [paper] [code]
[MCNN] Single-Image Crowd Counting via Multi-Column Convolutional Neural Network (CVPR) [paper] [unofficial code: TensorFlow PyTorch]
下面是从视频流来分析的模型清单:
[STDNet] Spatiotemporal Dilated Convolution with Uncertain Matching for Video-based Crowd Estimation (TMM) [paper]
[EPF] Estimating People Flows to Better Count them in Crowded Scenes (ECCV) [paper]
[MLSTN] Multi-level feature fusion based Locality-Constrained Spatial Transformer network for video crowd counting (Neurocomputing) [paper](extension of LSTN)
[LSTN] Locality-Constrained Spatial Transformer Network for Video Crowd Counting (ICME(oral)) [paper]
Fast Video Crowd Counting with a Temporal Aware Network [paper]
[ConvLSTM] Spatiotemporal Modeling for Crowd Counting in Videos (ICCV) [paper]

3. 上手实践

3.1 NWPU库

这里不涉及训练,仅进行test。使用如下的git库:
git clone https://github.com/gjy3035/NWPU-Crowd-Sample-Code.git
pip install -r requirements.txt安装必须的库
下载预训练模型:http://share.crowdbenchmark.com:2443/home/Pre-trained_Models_NWPU-Crowd,我这里用的是SCAR。模型有如下选择:
在这里插入图片描述

然后运行下面的代码:注意修改net使用的模型参数,以及模型地址的位置。

from matplotlib import pyplot as plt

import matplotlib
import os
import random
import torch
from torch.autograd import Variable
import torchvision.transforms as standard_transforms
import misc.transforms as own_transforms
import pandas as pd

from models.CC import CrowdCounter
from config import cfg
from misc.utils import *
import scipy.io as sio
from PIL import Image, ImageOps

torch.cuda.set_device(0)
torch.backends.cudnn.benchmark = True

mean_std = ([0.446139603853, 0.409515678883, 0.395083993673], [0.288205742836, 0.278144598007, 0.283502370119])
img_transform = standard_transforms.Compose([
        standard_transforms.ToTensor(),
        standard_transforms.Normalize(*mean_std)
    ])
restore = standard_transforms.Compose([
        own_transforms.DeNormalize(*mean_std),
        standard_transforms.ToPILImage()
    ])
pil_to_tensor = standard_transforms.ToTensor()
LOG_PARA = 100.0
net = CrowdCounter(cfg.GPU_ID, 'SCAR')
net.cuda()
model_path = 'saved_exp_para/SCAR/SCAR-latest.pth'
net.load_state_dict(torch.load(model_path))
net.eval()
imgname = '2.jpeg'
img = Image.open(imgname)
if img.mode == 'L':
    img = img.convert('RGB')
img = img_transform(img)[None, :, :, :]
with torch.no_grad():
    img = Variable(img).cuda()
    crop_imgs, crop_masks = [], []
    b, c, h, w = img.shape
    rh, rw = 576, 768
    for i in range(0, h, rh):
        gis, gie = max(min(h-rh, i), 0), min(h, i+rh)
        for j in range(0, w, rw):
            gjs, gje = max(min(w-rw, j), 0), min(w, j+rw)
            crop_imgs.append(img[:, :, gis:gie, gjs:gje])
            mask = torch.zeros(b, 1, h, w).cuda()
            mask[:, :, gis:gie, gjs:gje].fill_(1.0)
            crop_masks.append(mask)
    crop_imgs, crop_masks = map(lambda x: torch.cat(x, dim=0), (crop_imgs, crop_masks))

    # forward may need repeatng
    crop_preds = []
    nz, bz = crop_imgs.size(0), 1
    for i in range(0, nz, bz):
        gs, gt = i, min(nz, i+bz)
        crop_pred = net.test_forward(crop_imgs[gs:gt])
        crop_preds.append(crop_pred)
    crop_preds = torch.cat(crop_preds, dim=0)

    # splice them to the original size
    idx = 0
    pred_map = torch.zeros(b, 1, h, w).cuda()
    for i in range(0, h, rh):
        gis, gie = max(min(h-rh, i), 0), min(h, i+rh)
        for j in range(0, w, rw):
            gjs, gje = max(min(w-rw, j), 0), min(w, j+rw)
            pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx]
            idx += 1

    # for the overlapping area, compute average value
    mask = crop_masks.sum(dim=0).unsqueeze(0)
    pred_map = pred_map / mask

pred_map = pred_map.cpu().data.numpy()[0,0,:,:]
#pred = np.sum(pred_map) / LOG_PARA
from skimage import io
io.imshow(1-pred_map/np.max(pred_map))

如果用Res101_SFCN,需要做一下如下修改:

from collections import OrderedDict
net = CrowdCounter(cfg.GPU_ID, 'Res101_SFCN')
net.cuda()
model_path = 'saved_exp_para/Res_SFCN/SFCN+-all_ep_321_mae_90.7_mse_487.2_nae_0.375.pth'
modeldata = torch.load(model_path)
modeldata2 = OrderedDict()
for k,v in modeldata.items():
    modeldata2[k.replace('module.','')] = v
net.load_state_dict(modeldata2)
net.eval()

3.2 轻量化模型

https://github.com/HCPLab-SYSU/SKT。本文提出了一个简单而有效的结构化知识迁移框架, 把现有人群计数模型的结构化知识(层内知识+层间知识)充分地迁移至轻量化模型。 最后生成的轻量化模型, 参数量和计算量只有原来的6%,在GPU上至少有6.5× 倍的加速, 效果跟原模型差不多、甚至更好,可以真正地运用到实际场景。

  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
姿态估计是指通过计算机视觉技术从图像或视频中提取物体的姿态信息,如旋转角度、平移向量、尺度因子等。其中的热力图回归是一种常用的姿态估计方法,其主要思路是将姿态估计问题转化为一个回归问题,通过训练神经网络来直接预测出目标物体的关键点热力图。 具体来说,热力图回归的实现步骤如下: 1. 数据准备:首先需要准备包含目标物体的图像或视频数据,以及标注好的关键点位置数据。这些数据可以通过手工标注或使用自动化工具进行标注。 2. 热力图生成:接下来,需要根据标注的关键点位置数据生成热力图热力图是一个与图像尺寸相同的二维数组,其中每个元素表示该位置是目标物体的某个关键点的概率。生成热力图的方法有多种,例如高斯分布、线性分布等。 3. 神经网络训练:然后,将生成的热力图作为输入,训练一个神经网络来直接预测目标物体的关键点位置。常用的神经网络结构包括卷积神经网络(CNN)和残差网络(ResNet)等。 4. 关键点位置预测:在测试阶段,将目标物体的图像输入训练好的神经网络中,即可得到预测的关键点热力图。然后,根据热力图中的最大值点作为预测的关键点位置,即可得到目标物体的姿态信息。 总体来说,热力图回归方法通过直接回归关键点热力图来解决姿态估计问题,具有训练简单、预测效果好等优点,已被广泛应用于计算机视觉领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值