论文阅读笔记(1):Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation

本文提出了一种名为MKR的多任务特征学习方法,用于知识图谱增强推荐系统。MKR利用知识图谱嵌入任务辅助推荐任务,通过交叉压缩单元学习项目与知识图实体之间的高阶交互,解决了协同过滤的稀疏性和冷启动问题。MKR在电影、书籍、音乐和新闻推荐方面表现出色,尤其在用户-项目交互稀疏的情况下仍能保持良好性能。
摘要由CSDN通过智能技术生成

Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation

原文链接:https://arxiv.org/pdf/1901.08907v1.pdf
在这里插入图片描述
PS:做个笔记,以便自己查阅。

目录

摘要
1 介绍
2 研究方法
3 理论分析
4 实验
5 相关工作
6 总结和未来展望

摘要

在真实的推荐场景中,协同过滤往往存在稀疏性和冷启动问题,因此,研究人员和工程师通常利用辅助信息来解决问题,提高推荐系统的性能。本文将知识图作为辅助信息的来源。提出了一种多任务特征学习方法MKR,用于知识图增强推荐。MKR是一个利用知识图嵌入任务来辅助推荐任务的深度端到端框架。这两个任务通过交叉压缩单元相关联,该单元自动共享潜在特征,并学习推荐系统中的项目与知识图中的实体之间的高阶交互。证明了交叉和压缩单元具有足够的多项式逼近能力,并表明MKR是推荐系统和多任务学习的几种代表性方法的通用框架。通过对真实世界数据集的大量实验,我们证明了MKR在电影、书籍、音乐和新闻推荐方面取得了巨大的进步,超越了比较先进的模型。即使用户-项目交互很少,MKR也能够保持良好的性能。

1 介绍

推荐系统(RS)旨在解决信息爆炸问题并满足用户的个性化兴趣。最受欢迎的推荐技术之一是协作过滤(CF)[11],它利用用户的历史互动并根据用户的共同偏好进行推荐。但是,基于CF的方法通常会遇到用户与项目交互的稀疏性以及冷启动问题。因此,研究人员建议在推荐系统中使用辅助信息,包括社交网络[10],属性[30]和多媒体(例如文本[29],图像[40])。知识图谱(KGs)是RS的一种辅助信息,通常包含丰富的事实和有关项目的联系。最近,研究人员提出了一些学术和商业的知识图谱,例如NELL1,DBpedia2,Google Knowledge Graph3和Microsoft Satori4。由于KG的高维和异构性,通常通过知识图嵌入(KGE)方法对其进行预处理[27],该方法将实体和关系嵌入到低维向量空间中,同时保留其固有结构。

现有KG-aware模型

受到在各种任务中成功应用KG的启发,研究人员最近尝试利用KG来提高推荐系统的性能[31,32,39,40,45]。个性化实体推荐(PER)[39]和带有特征选择的分解因子机(FMG)[45]将KG视为异构信息网络,并提取基于元路径/元图的潜在特征来表示用户和项目之间的连通性 不同类型的关系路径/图形。应该注意的是,PER和FMG严重依赖手动设计的元路径/元图,这限制了它在通用推荐方案中的应用。深度知识感知网络(DKN)[32]设计了一个CNN框架,将实体嵌入与单词嵌入相结合以进行新闻推荐。但是,在使用DKN之前需要实体嵌入,这导致DKN缺乏端到端的培训方式。 关于DKN的另一个问题是,它几乎不能包含文字以外的辅助信息。RippleNet[31]是一个类似于内存网络的模型,它在KG中传播用户的潜在偏好,并探索用户的层次兴趣。但是关系的重要性在RippleNet中表现得很弱,因为关系R的嵌入矩阵很难训练成二次型v⊤R h(v和h是两个实体的嵌入向量)。协作性的知识基础嵌入(CKE)[40]在统一的框架中将CF与结构性知识,文本知识和视觉知识结合在一起。 但是,CKE中的KGE模块(即TransR)比推荐更适合于图形应用(例如KG完成和链接预测)。 另外,在贝叶斯框架下,CF模块和KGE模块在CKE中是松散耦合的,因此对于推荐系统,KG的监督不太明显。

方法

为了解决以往工作的局限性,我们提出了一种用于知识图增强推荐的多任务学习(MTL)方法MKR。MKR是一个通用的端到端的深度推荐框架,旨在利用KGE任务来辅助推荐任务5。注意,这两个任务不是相互独立的,而是高度相关的,因为RS中的一个项目可能与KG中的一个或多个实体相关联。因此,一个项目及其对应的实体可能在RS和KG中具有相似的邻近结构,在低层和非任务特定的潜在特征空间[15]中具有相似的特征。我们将在实验部分进一步验证相似性。为了对项目和实体之间的共享特性建模,我们在MKR中设计了一个交叉压缩单元。交叉压缩单元明确地对项与实体之间的高阶交互进行建模,并自动控制这两项任务的交叉知识传输。通过交叉压缩单元,项目和实体的表示可以互补,有助于避免拟合噪声和提高泛化能力。通过交替优化两个不同频率的任务,可以训练整个框架,使得MKR在实际的推荐算法中具有较高的灵活性和适应性。
我们探讨了MKR的表达能力,并通过理论分析表明,交叉压缩单元能够近似地表示项目和实体之间的高阶特征交互。我们还证明了MKR是一种广义的框架,适用于多种有代表性的推荐系统和多任务学习方法,包括因子分解机[22,23]、深度交叉网络[34]和十字绣网络[18]。根据经验,我们评估了我们的方法在四个推荐场景即。、电影、书籍、音乐和新闻推荐。结果表明,MKR在点击率(CTR)预测(例如,电影平均提高11.6%的AUC)和top-K推荐(例如,书籍平均提高66.4%的Recall@10)方面都取得了显著的进步。MKR还可以在稀疏场景中保持良好的性能。

贡献

值得注意的是,由于我们更关心推荐任务的性能,因此本文研究的问题也可以建模为跨域推荐[26]或迁移学习[21]。然而,关键的观察是,虽然跨域推荐和转移学习对于目标域只有一个目标,但是它们的损失函数仍然包含测量源域中数据分布或两个域之间相似性的约束项。在我们提出的MKR中,KGE任务明确地作为约束项,为推荐系统提供正则化。我们要强调的是,本文的主要贡献是将问题建模为多任务学习:我们比跨域推荐和转移学习更进一步,理论分析和实验结果表明,发现任务间的相似性不仅有助于推荐系统,而且有助于知识图谱的嵌入。

2 研究方法

在本节中,我们首先制定了知识图增强推荐问题,然后介绍了MKR的框架,并详细介绍了交叉压缩单元、推荐模块和KGE模块的设计。最后讨论了MKR的学习算法。

2.1问题公式化

在典型的推荐场景中,我们有一组M用户U={u1,u2,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值