opencv开发小技巧记录

前言

opencv用的多了,就会发现很多方法不是直接调用就能达到效果的。为了达到最优效果,通常需要对参数进行适当调整,然后与不同方法配合使用。比如sift的效果,比如calibrate的计算结果等。。。

12.25 一些新的体悟:如果不知道算法原理,这次调好了,下次又要花很多时间,所以要花时间攻略它。

正文

本文罗列一下实践中的发现的技巧

1 sift算法

sift算法在一开始直接使用,效果让我感觉大大的意外,貌似没有传说中的牛掰。sift匹配乱糟糟有木有。实际上好像是我不太会用。

sift是最近才稍微懂一点点的,相关文章很多,这里推荐一篇
https://www.cnblogs.com/jiahenhe2/p/7919356.html

从中我最后学到了很多东西,利用金字塔处理尺寸缩放,利用高斯去噪,利用差分提取高频信息(轮廓),利用关键点邻域梯度生成的向量作为描述子,通过计算欧式距离进行匹配。

小技巧:实验的时候发现使用knnmatch匹配效果很不错,然后再来个金字塔什么的就更棒棒哒。

2 calibrate

位姿估计最近用的多,自然少不了opencv的solvePnP,实验发现,该方法不太稳定,会产生两种值,一种是相对正确的,一种则相反。

小技巧:使用预置的RT,别忘了后面的开关

3 UMat与Mat互相转换

仅用copyTo,避免不必要的麻烦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值