数学分析
文章平均质量分 82
以华东师大《数学分析》为蓝本进行描述
你回到了你的家
这个作者很懒,什么都没留下…
展开
-
五、导数和微分
一、导数的概念定义1设函数y=f(x)y=f(x)y=f(x)在点x0x_0x0的某邻域内有定义,若极限limx→x0f(x)−f(x0)x−x0(3)\lim\limits_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\quad\quad\quad\quad(3)x→x0limx−x0f(x)−f(x0)(3)存在,则称函数fff在点x0x_0x0可导,并称该极限为函数fff在点x0x_0x0的导数,记作f′(x0)f'(x_0)f′(x0)令x=x原创 2021-10-08 20:01:59 · 170 阅读 · 0 评论 -
四、函数的连续性
一、连续性概念1.1 函数在一点的连续性定义1设函数fff在某U(x0)U(x_0)U(x0)上有定义,若:limx→x0f(x)=f(x0)(1)\lim\limits_{x\to x_0}f(x)=f(x_0)\quad\quad\quad\quad(1)x→x0limf(x)=f(x0)(1)则称fff在点x0x_0x0连续。...原创 2021-10-08 19:24:16 · 126 阅读 · 0 评论 -
三、函数极限
一、函数极限的概念1.1 xxx趋于∞\infty∞时函数的极限定义1:设fff为定义在[a,+∞)[a,+\infty)[a,+∞)上的函数,AAA为定数。若对任给的ϵ>0\epsilon>0ϵ>0,存在正数M(≥a)M(\ge a)M(≥a),使得当x>Mx>Mx>M时,有:∣f(x)−A∣<ϵ|f(x)-A|<\epsilon∣f(x)−A∣<ϵ则称函数fff当xxx趋于+∞+\infty+∞时以AAA为极限,记作:limx→+∞f(原创 2021-10-05 18:10:12 · 1197 阅读 · 0 评论